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Introduction 
 
The estimation of genetic correlations between 
countries is a prerequisite for international 
evaluation. Unfortunately, the increase in the 
number of participating countries and the lack 
of genetic links between some of them leads to 
statistical and computational difficulties. 
 

In Mutiple-trait Across Country Evaluation 
(MACE), performances in all countries are 
considered as different traits whereas the under-
lying trait, e.g. milk production, is often similar 
for all countries. Thus, the expression of this 
trait in different countries tends to be highly 
correlated, and the genetic covariance matrix 
tends to have one or several very small eigen-
values (Van der Beek, 1999). A reduction of the 
number of parameters to be estimated requires 
the assumption of an underlying structure of the 
correlation matrix. One of the proposed alterna-
tives is to use principal components (PC) or 
factor analysis approaches (Madsen et al., 2000; 
Mäntysaari, 2004; Goddard, 2004, personal 
communication; Meyer and Kirkpatrick, 2005).  
 

PC analysis assumes that all of the genetic 
variance is explained by a reduced number of 
principal components common to all countries, 
whereas factorial approaches assume that only a 
part of this variance is shared with other 
countries, the remaining part being country 
specific. As a result, PC analysis leads to a rank 
reduction of the genetic (co)variance matrix 
while factor analysis does not. Nevertheless, 
both approaches are of interest because they 
lead to more parsimonious models. 
 

By only considering the first N principal 
com-ponents or factors (N<M, M is the number 
of original variables), it is possible to 
summarize the information in the data with 
limited loss of information. In this context, 
Madsen et al. (2000) and Mäntysaari (2004) 

proposed to estimate (co)variance components 
with a classical model and to reparametrize the 
corresponding matrix, discarding the smallest 
eigenvalues of the full rank matrix. A second 
approach which directly estimates a reduced 
rank (co)variance matrix was proposed by 
Meyer and Kirkpatrick (2005).  
 

The aim of this study was to assess the pros-
pects of using PC and factor analysis approa-
ches for the estimation of the international 
genetic correlation matrix for milk yield data.  
 
 
Material & Methods 
 
The data were deregressed national breeding 
values of Holstein bulls and their effective 
daughter contributions (EDC) used in the Inter-
bull routine evaluation of August 2003 for milk 
yield from 18 member countries (Australia, 
Belgium, Canada, Czech Republic, Denmark, 
Finland, France, Germany, Hungary, Ireland, 
Italy, New-Zealand, Poland, Spain, Switzer-
land, The Netherlands, United Kingdom and the 
United States), with a number of common bulls 
ranging from 6 (Finland – Poland) to 772 
(Canada – the United States).  
 

The sire model currently used in 
international genetic evaluations (Schaeffer, 
1994) was applied. 
 

An “unstructured” model, called here 
classical model (CM) was used to estimate 
“reference” genetic correlations among the 18 
countries. A bending procedure (Jorjani et al., 
2003) was applied to ensure that the genetic 
correlation matrix was positive definite. Two 
approaches were used to reparametrize the 
genetic correla-tions matrix. The PC approach 
was based on the canonical decomposition of 
the correlation matrix ′ ′= ⋅ ⋅ = ⋅rG U D U V V , 
where D  is the diagonal matrix of eigenvalues, 
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U  is the corresponding set of orthogonal 
eigenvectors, and 1 2= ⋅V U D . The rank of rG  
(equal to the number of countries M) was 
reduced to N by setting to zero the smallest 
eigenvalues in D , and deleting the 
corresponding eigenvectors from U , such as 

* * * * * *′ ′= ⋅ ⋅ = ⋅P U D U V V . Then, *P  was rescaled 
to make it a correlation matrix *rG , with ijth 

elements computed as = ×* * * *
ij ij ii jjrG P P P . 

The number of parameters to estimate is 
( )− +2 1 2N M N  (Meyer and Kirkpatrick, 

2005). 
 

The second approach was an approximate 
factor analysis, hereafter referred to as A_FA. 

*P  was computed as for the PC approach, but 
instead of rescaling it to obtain *rG , a diagonal 
matrix F was added such that the diagonal 
elements of the genetic correlation matrix were 
equal to unity. These elements were not 
estimated as in a formal factor analysis (i.e. at 
the same time as *P ) but defined by the 
constraint = − *( )diagF I P . Therefore, the 
number of parameters to estimate was the same 
as for the PC approach. However, the rank of 
the correlation matrix *rG  was still M. 
 

In the following analyses, the estimates 
obtained with CM will be considered as the 
“reference” genetic correlations. PCi and 
A_FAi will represent the reparametrized 
genetic correlation matrices using the PC or the 
A_FA approach respectively, considering the i 
largest eigenvalues and their corresponding 
eigenvectors. 
 
 
Results and Discussion 
 
1. Base countries 
 
A reduced number of the 18 countries with 
strong links and representative for the produc-

tion systems prevailing world-wide were 
chosen to define the principal components. 
These countries will be referred to as base 
countries. Two sets of base countries were 
compared. Base9 included seven large 
connecting countries (AUS, DEU, FRA, GBR, 
ITA, NZL, USA) and two countries with large 
contributions to the first eigenvectors of the 18 
countries CM correlation matrix (HUN, CZE) 
(Table 1). Base8 included five countries having 
large contributions to the first eigenvectors 
(CHE, CZE, DEU, HUN, NZL) and three 
countries improving links with all the others 
(GBR, NLD, USA).  
 
Table 1. Eigenvalues, relative proportion of the 
explained variances of the 18×18 CM genetic 
correlation matrix, and countries with large 
contributions (>0.30) to these eigenvectors. 
 

Countries >0.30 in eigenvector def.  Eigenv. Proportion positive sign negative sign 
1 15.397 0.855   
2 0.789 0.044 AUS, NZL  
3 0.562 0.031 NZL POL, CZE 
4 0.432 0.024 POL, CHE CZE 
5 0.228 0.013 DEU, NLD HUN, CHE 
6 0.196 0.011 BEL FIN 
7 0.095 0.005 USA, AUS BEL, HUN 
8 0.073 0.004 NZL, DNK AUS, GBR 
9 0.061 0.003 NLD DEU, AUS, ESP 

10 0.051 0.003 FRA, ITA, IRL HUN, DNK 
11 0.045 0.003 NLD CAN 
12 0.031 0.002 DEU, FRA USA, GBR 
13 0.022 0.001 ITA, NLD, CAN USA, FRA 
14 0.015 0.001 BEL, FIN NLD, IRL 
15 0.001 0.000 CHE POL 
16 0.000 0.000 NZL, GBR, ESP IRL, DNK 
17 0.000 0.000 ESP ITA, GBR 
18 0.000 0.000 USA DNK 

 
For base9, the comparison of the CM 

genetic correlations with genetic correlations 
obtained for a PC approach considering various 
numbers of eigenvalues and corresponding 
eigenvectors showed large average differences. 
Five princi-pal components should be 
considered to obtain an average absolute 
deviation of correlations lower than 0.030 
(Table 2). For the A_FA approach, only 2 
eigenvalues were needed to obtain an average 
absolute deviation of corre-lations lower than 
0.030. Similar patterns were obtained with 
base8. 

 
Table 2. Maximum and average absolute deviations of reparametrized genetic correlations (rG) with 
PC approach and A_FA approach computed for various numbers of eigenvalues and corresponding 
eigenvectors (between one and 8) from CM genetic correlations for the 9 countries of base9. 

  1 Eig. 2 Eig. 3 Eig. 4 Eig. 5 Eig. 6 Eig. 7 Eig. 8 Eig.
 Eigenvalues’ cumulative proportion of 83.8 90.3 95.1 96.9 98.0 98.7 99.3 99.7

Maximum deviation rG PC-CM 0.361 0.335 0.147 0.076 0.056 0.036 0.025 0.022PC  
Average absolute deviation rG  PC-CM 0.185 0.103 0.050 0.031 0.020 0.013 0.007 0.003
Maximum deviation rG A FA-CM 0.124 0.132 0.058 0.036 0.019 0.013 0.012 0.011
Average absolute deviation rG  A FA-CM 0.045 0.026 0.012 0.009 0.006 0.005 0.003 0.001

A_FA 

Average F 0.162 0.097 0.049 0.031 0.020 0.013 0.007 0.003
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The comparison of breeding values 
predicted on each country scale with base9 
reparametrized genetic correlations and CM 
genetic correla-tions (Figure 1) showed product 
moment corre-lations that were larger than 
0.990 for PC approaches including at least 5 
components. Increasing the number of principal 
components improved the correlations between 
predicted breeding values. For A_FA, the 
correlations were larger than 0.999 for 8 of the 
9 countries when at least 3 factors were 
considered. For the analysis of the top 100 
bulls, the larger the number of principal 
components considered, the better the 
agreement between the CM and PC approaches 
(Figure 2). However, the num-ber of common 
top bulls was on average disap-pointing low 
given the very high product moment 
correlations. For the A_FA approach, whatever 
the number of factors considered, the stability 
of predicted breeding values rankings was 
always good with at least 91 of the top 100 
bulls remaining in this category. 
 
 
2. All countries 
 
Based on the previous results and the 
substantial reduction of the number of 
parameters to estimate (80 for the variance-
covariance matrix instead of 171 with a CM), 
A_FA5 was chosen to estimate the 18×18 
correlation matrix for both sets of base 
countries. The lower (or upper) triangle of the 
full genetic correlation matrix for the 18 
countries was divided into 3 parts: correlations 
among base countries (rG_BB), correlations 
between base and other countries (rG_BO), and 
correlations among other countries (rG_OO).  
 

Genetic correlations among all countries 
were computed using the following approach 
(see Leclerc et al., 2005 for details). First, one 
or two countries at a time were added to the 
base countries and their correlations (i.e. 
elements of rG_BO) were estimated keeping 
rG_BB fixed. Then, the rG_BO estimates were 
regressed on the 5 vectors defining *V  for the 
base countries. The estimated regression 
coefficients were used to define the part of *V  
corresponding to the other countries. From this, 

*rG  was created ( ( )* * *( )diag−= +rG I PP  

with * * *′= ⋅P V V ). The lower diagonal block of 
*rG  is rG_OO.  

 
Figure 1. Product moment correlations between 
breeding values predicted with CM genetic 
correlations and genetic correlations based PCi 
or A_FAi approaches (◊ PC3, □ PC4, △ PC5, 
○ PC6, and ♦ A_FA3, ■ A_FA4, ▲ A_FA5, 
● A_FA6) for 9 countries. 
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Figure 2. Number of top 100 bulls with 
breeding values predicted with CM genetic 
correlations also in the top 100 with BV 
predicted with PCi or A_FAi approaches for 9 
countries (◊ PC3, □ PC4, △ PC5, ○ PC6, 
 A_FA3, ■ A_FA4, ▲ A_FA5, ● A_FA6). 
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The average absolute deviations of the 153 

genetic correlations obtained for A_FA5 from 
those estimated with CM for the 18 countries 
were 0.016 and 0.014 for base9 and base8 
respectively (Table 3). The rG_BB correlations 
estimated with A_FA5 were accurate, with no 
deviation of correlations larger than 0.030 from 
CM for both sets of base countries. The main 
difference between both sets of base countries
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Table 3. Average, maximum and distribution of deviations of genetic correlations (rG) computed for 
A_FA5 approach from CM correlations for all countries and groups of countries (among base 
countries (BB), between base and other countries (BO) and among other countries(OO)). 

 All1 In rG_BB In rG_BO  In rG_OO
Definition of the base  base92 base83 base9 base8 base9 base8  base9 base8
No. estimates (/153 rG CM)  153 153 36 28 81 80  36 45
Average deviation rG  A FA-CM -0.010 -0.011 0.003 0.003 -0.005 -0.009  -0.031 -0.023
Average abs. deviat. rG  A_FA-CM 0.016 0.014 0.006 0.006 0.012 0.012  0.035 0.024
Maximum deviation rG  A_FA-CM -0.127 -0.096 0.019 0.018 0.047 -0.054  -0.127 -0.096

0.05 <  x  0.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0
0.03 <  x  ≤  0.05  0.7 0.7 0.0 0.0 1.2 1.3  0.0 0.0
0.01 <  x  ≤  0.03  12.4 5.2 19.4 21.4 11.1 2.5  8.3 0.0

-0.01 ≤  x  ≤  0.01  52.3 51.0 77.8 75.0 58.0 63.8  13.9 15.6
-0.03 ≤  x  < -0.01  19.6 31.4 2.8 3.6 22.2 22.5  30.6 62.2
-0.05 ≤  x  < -0.03  11.8 9.8 0.0 0.0 7.4 8.8  33.3 17.8

Frequency of 
correlation 
deviations         
A_FA – CM  
(%) 

x  < -0.05  3.3 2.0 0.0 0.0 0.0 1.3  13.9 4.4
1 Statistics on rG among all countries, rG among base countries, rG between base and other countries and rG among other countries 
2 Base9 with base countries: AUS, CZE, DEU, FRA, GBR, HUN, ITA, NZL, USA. 
3 Base8 with base countries: CHE, CZE, DEU, GBR, HUN, NLD, NZL, USA. 

 
is related to the rG_OO genetic correlations, of 
which 47.2% deviated by more than 0.030 
from CM estimates for base9, and only 22.2% 
for base8. Thus, the choice of countries to 
define the base appeared to have a large impact 
on results. The deviations of genetic 
correlations larger than 0.050 concerned 
country pairs with less than 50 common bulls.  
 
Note that genetic correlations obtained with 
CM are estimates, and are not necessarily the 
the correct ones. 
 
 
Conclusion 
 
The PC and A_FA approaches proposed here 
are pragmatic and give very good 
approximations of estimated genetic 
correlations. The number of parameters to 
estimate is reduced in comparison with a CM 
and neither approach requires new programs 
and/or algorithms.  
 

Both approached can be easily extended to 
all participating countries since only 
correlations between the base countries and the 
remaining countries are needed. Small and/or 
poorly connected populations such as Finland 
were used here without encountering any 
particular problems in the estimation of genetic 
correlations.  
 

Compared to the reference situation 
represented by the CM correlation matrix in this 
study, the impact on breeding values of using 
correlations estimated from the PC approach 
was larger than with the A_FA approach. 
However, only the PC approach makes it 

possible to obtain a reduced rank correlation 
matrix and/or to have a limited number of 
lists/scales. 
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