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Abstract 
 
We discuss the development of a program for genetic evaluation based on best linear unbiased 
prediction using performance records, pedigree information and marker data. The covariance among 
relatives at the marked quantitative trait locus is calculated based on identity by descent probabilities 
using a descent graph sampler. The algorithm is applicable for pedigree containing ungenotyped 
relatives and unknown animals. Disequilibrium between markers and quantitative trait locus can be 
included. A variety of linear models are available and the equations are solved by preconditioned 
conjugate gradient methodology using iteration on data. These methods are to be applied to the 
Livestock Improvement breeding scheme for dairy cattle. 
 
 
Introduction 
 
In recent times molecular genetics has made it 
possible to partition some of  the genetic 
variability of traits into quantitative trait loci 
(QTL). Since 1994, Livestock Improvement 
Corporation (LIC) has been involved in 
ventures to detect and utilise QTL in dairy 
cattle. Initial work was based on a 
granddaughter design and more recently an F2 
Holstein-Friesian x Jersey crossbred trial and 
DNA pooling (Spelman et al., 2001a,b).  
Marker assisted selection (MAS) has been 
applied within the LIC breeding scheme using 
a “bottom-up” approach (McKinnon and 
Georges, 1998), with limited success because 
of disappointing results with reproductive 
technologies used to generate full-sib families.  
 

Three  types of observable genetic loci 
were distinguished  by Dekkers (2003). The 
ideal is to identify the causative mutation 
which has a direct effect on the trait and can 
then be fitted in the BLUP genetic evaluation 
model as a fixed effect if the genotype is 
observed for all individuals.  Next in 
importance are LD markers which are in 
population-wide linkage disequilibrium with 
the functional mutation and highly likely to be 
in close proximity to it (1-5 cM), and are 
usually localised with fine mapping 
techniques. Finally LE markers which are in 
population-wide linkage equilibrium with the 
function mutation (LD only within family) are 

easily detected from the analysis of large half-
sib families using sparse marker maps (20cM 
spacing). These three types are in increasing 
order of ease of detection but in reverse order 
for the ease and ability to utilise in selection 
programmes. We refer to genetic markers that 
have a direct effect on the trait as type I 
markers and the LD or LE markers that are 
linked to the trait as type II. Statistical methods 
have been developed for using marker 
information in BLUP genetic evaluations (e.g. 
Fernando and Grossman, 1989; Fernando, 
2004). The linear models for genetic 
evaluation can be characterised by inclusion of 
a fixed effect if the marker has an effect on the 
trait means (type I or type II with LD) and a 
random effect to account for covariances due 
to cosegregation information (type II). 
 

This paper describes developments for the 
implementation of a marker-assisted BLUP 
genetic evaluation system (MABLUP) in the 
LIC breeding scheme. 
 
 
Materials and Methods 
 
Models  for marker-assisted BLUP 
 
Following Fernando (2004) we assume 
additive gene action for the QTL linked to the 
marker (MQTL) and also for other loci 
affecting the trait (RQTL), the latter assumed 
to be unlinked to the markers and the MQTL.  
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We assume two alleles, Q1 and Q2 are 
segregating at the MQTL. If the genotypes at 
the MQTL are observed then the trait 
phenotypes can be modelled as  
 

eZuZQXβy +++= µ                      (1) 
 
where y is the vector of phenotypic values, β  
is a vector of fixed effects, µ is the Q2 allele 
substitution effect at the MQTL, u is the vector 
of additive effects of the RQTL, e is a vector 
of residuals and X, Z, and Q are known 
incidence matrices. Q is a column vector 
giving the number of Q2 alleles for each 
individual. This model applies to the type I 
marker assuming that all individuals are 
genotyped. 
 

If the genotypes at the MQTL are not 
observed, then Q is an unobservable random 
matrix, the elements of which depend on the 
information provided by observed marker loci 
linked to the QTL. If we define the random 
vector a with zero mean as 

 
µµ )|( ME QQa −=                          (2) 

 
where )|(ˆ ME QQ = is the conditional 
expectation of Q given observed marker 
genotypes, then equation (1) can be written as 
 

eZuZaQZXβy ++++= µˆ           (3) 
 
where again all incidence matrices are known. 
The covariance matrix of u is proportional to 
the additive relationship matrix which can be 
inverted efficiently (Henderson, 1976). The 
inverse of the covariance matrix for a is not 
sparse and cannot be inverted efficiently. 
However we can partition p

i
m
ii vva +=  into 

the maternal and paternal MQTL alleles of 
individual i, and equation (3) now becomes 
 

eZuWvQZXβy ++++= µˆ           (4) 
 
where W is an incidence matrix and now the 
inverse of the covariance matrix of v can now 
be inverted efficiently (Wang et al., 1995).  
 
 
 

Comparing equations (1) and (4),  the 
different types of genetic loci can be associated 
with the terms involving µ and v. Under 
equilibrium, the matrix Q̂ is constant and so 

µQZ ˆ can be dropped from equation (4). In 
this situation only cosegregation information 
will contribute to the analysis through 
covariances among MQTL effects. On the 
other hand, when disequilibrium is complete 
and all marker genotypes are observed, 

QQ =ˆ and v is null so that only 
disequilibrium information and no 
cosegregation information contributes to the 
analysis, and equation (4) reduces to equation 
(1). When disequilibrium is partial, equation 
(4) applies where disequilibrium information 
will contribute to the mean of MQTL effects 
and cosegregation information  will contribute 
through covariances between MQTL effects. 
 

For type I markers, when not all individuals 
are genotyped, some elements of Q are no 
longer observed but can be replaced by their 
conditional expectations given observed 
genotypes. A model similar to equation (3) can 
be applied where the random vector a 
corresponds to animals with missing 
genotypes. An inverse for var(a) can be 
computed efficiently (Fernando, 2004). 
 
 
Mean of MQTL  additive genetic values 
 
Each element of the matrix Q is the sum of 
two Bernoulli variables so that the conditional 
expectation has elements 
 

p
i

m
ii ppQ +=ˆ  

 
which is the sum of the probabilities that the 
maternal and paternal  MQTL allele states for 
individual i are identical to allele Q2 given 
marker information. Each of these probabilities 
in turn can be expressed as the probability that 
the maternal  (paternal) MQTL allele 
originated in a given founder haplotype times 
the probability that the founder haplotype has 
MQTL allele Q2, summed over the haplotype 
states. The latter probabilities are the 
disequilibrium parameters. 
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Covariance of MQTL additive values 
 
The variance of the maternal MQTL effect for 
individual i is )1(2 m

i
m
i pp −µ and similarly for 

the paternal allele and therefore depend on 
marker genotypes under disequilibrium. 
Covariances between MQTL effects are based 
on the probabilities of the descending QTLs 
(PDQs) and can be calculated using a 
recurrence formula which is independent of the 
level of disequilibrium. The PDQs are 
estimated by means of a descent graph sampler 
(Schelling, 2004; Stricker et al., 2002). Allelic 
origin is sampled at multiple marker loci given 
an arbitrary pedigree and known marker 
information.  Disequilibrium between markers 
and QTL can be accounted for through 
extending the allelic origin samplers to 
estimate founder haplotype origin 
probabilities. For each individual four non-
zero descent probabilities are derived 
according to gamete identification by parental 
origin. For the paternal allele of the individual 
we have the probabilities of inheriting the 
paternal or maternal MQTL allele of the sire 
conditional on the observed marker 
information, and similarly the probabilities that 
the maternal allele in the individual was 
descended from the paternal or maternal 
MQTL allele of the dam. There are only two 
independent probabilities per individual 
because the paternal and maternal origin 
probabilities must sum to unity. The elements 
of  var(v)-1 are then derived using simple 
tabular rules based on knowledge of the PDQs 
(Wang et al., 1995; B.L. Harris and D.L. 
Johnson, unpublished). The algorithm 
eliminates singularity problems by including 
only independent MQTL effects (i.e. when any 
of the PDQ probabilities is unity),  provides a 
non-singular inverse for any pedigree, and a 
method to prune MQTL effects not linked to 
animals with data. Inbreeding at the QTL locus 
can also be incorporated.  
 
 
Software development 
 
The MAS/GAS project which we describe has 
focused on two main modules: (i) calculation 
of the PDQs, and (ii) the development of 
MABLUP for  solving a variety of linear 
mixed models.  
 

The MABLUP module, for both single- and 
multiple-trait analyses, is designed to handle 
repeated measures, maternal effects, multiple 
QTL in equilibrium or disequilibrium with 
flanking markers. MQTL effects are assumed 
to be additive in all cases. The situation of 
pleiotropy (effect of QTL on several traits) can 
be handled for two situations. If we assume 
two alleles  at the QTL then allelic effects at 
subsequent traits can be modelled as a linear 
combination of the allelic effects at the first 
trait (the scale model). Alternatively, the 
covariance matrix at the MQTL can still be 
obtained as a direct product  between G and 
the covariance matrix among the MQTL 
effects for the different traits. But under 
disequilibrium only the scale model is 
available as the expression as a direct product 
is not possible because the MQTL covariances 
among traits are now dependent on the MQTL 
means. The mixed model equations are solved 
using preconditioned conjugate gradient 
methodology and iteration on data for large 
models. 
 
 
Discussion 
 
The challenges in the future, in addition to 
further theoretical developments in the  
multiple trait case under disequilibrium, 
involve testing the package on large data sets 
(of  the order of tens of thousands) and the 
estimation of parameters required for the 
model. The latter include development of an 
approach to maximise the likelihood for 
estimation of disequilibrium parameters and 
variance components due to the MQTL and 
polygenes. Other issues include the reduction 
in size of the equations through elimination of 
missing MQTL observations.  
 

Current animals and ancestors involve 
some 15,000 animals in the LIC breeding 
scheme. Testing on this size of data will 
undoubtedly lead to further efficiencies in the 
software. Integration of  MABLUP  in the 
breeding scheme raises issues as to which 
animals to genotype. The source of bull 
mothers in the New Zealand population comes 
from the commercial cow population and so 
genotype information is not readily available 
as would be the case for a central nucleus. The 
flow of genes from the commercial tier may 
change in the future due to increased genetic 
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progress (therefore increased lag between tiers) 
or through limitations in trait recording and 
genotyping in the wider population. Thus the 
national herd as a source of bull mothers may 
be less important in the future and  a subset of 
elite cows will likely emerge. The use of 
reproductive technologies among contracted 
cows leads essentially to a dispersed nucleus 
system (Meuwissen, 1991). We need to 
identify those cow families that contribute 
most to the LIC breeding scheme and give 
consideration to factors such as cost, technical 
feasibility and rates of genetic improvement. 
 

Successful implementation of MAS 
requires an integrated approach involving 
economic aspects, business goals and risks and 
markets. Economic values for a selection index 
including  MQTL information should 
encapsulate value on farm, marketing criteria 
and time to fixation of favourable alleles.  
 

Enhancements to the LIC breeding scheme 
over time has led to increased rates of genetic 
gain. New technologies such as genetic 
markers have promise of further 
improvements. To facilitate an improved 
breeding scheme we require systems modelling 
of those components of the dairy industry that 
influence genetic gain and productivity. 
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