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Introduction 
 
Routine genetic evaluations are typically sub-
ject to time constraints. For example, the In-
terbull evaluations have a turn around time of 
10 days, from the deadline of data submission 
to Interbull to pre-release of international 
evaluation results to subscribing countries. 
During this time, 162 different sets of MACE 
mixed model equations (MME) need to be 
solved. 
 

Klei (1995) presented a method to solve the 
MACE MME which requires an equation for a 
bull within a country only when he contributes 
additional information from that country. This 
is the case when he either has an own observa-
tion in a country or a descendant with informa-
tion in a country. Since 80-90% of the bulls 
have information in one country only, this ap-
proach reduced the size of MME drastically. 
 

Recently an increase in predictive ability of 
MACE evaluations was reported when sire-dam 
relationships were used in the additive genetic 
relationship matrix (Van der Linde and De 
Jong, 2005), rather than sire-maternal grand-
sire relationships as in the initial specification 
of Mace (Schaeffer, 1994). The data set used 
by Van der Linde and De Jong (2005) com-
prised seven countries, just over 60 thousand 
records for 56 thousand bulls with daughter 
information. The size of the pedigree file 
nearly doubled from 59 thousand records to 
109 thousand records by adding bull dam 
pedigree information, and the time for solving 

the MME increased by a factor 9. When con-
sidering sire-dam relationships in the MACE 
evaluation for protein for Holstein, with 25 
participating populations, it took approxi-
mately 23 hours to solve the MME, which 
would break the time limits for a routine 
evaluation. 
 

The aim of this study was to investigate three 
strategies that reduce the resource (time and 
memory) to solve for MACE breeding values. 
The three strategies are: 1) setting up equa-
tions (in the MME) for parents only; 2) elimi-
nating equations for bull dams with just on 
male offspring and 3) application of an alter-
native ordering algorithm. 
 
 
Methods 
 
MACE 
 
In scalar form, the model for MACE can be 
written as: 
 

ij i ij ijy c u e= + + ,
 
where: yij is the observation (de-regressed na-
tional genetic evaluation) of bull j in country i, 
ci is the mean for country i, uij is the genetic 
merit of bull j in country i, and eij the residual 
pertaining to yij. 
 

In matrix notation, the model can be written 
as:
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where: yi, ui and ei are the vector of observa-
tions, genetic effects and residuals, respec-
tively, in country i,  Xi is an incidence matrix 
connecting observations to country mean ef-
fect, and Zi is an incidence matrix connecting 

observations to genetic effects. The variance-
covariance matrices for the random effects are: 

( )*var o= = ⊗u G A G , where A is the rela-
tionship among animals in u* and Go the ge-
netic variance-covariance matrix among traits, 
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and ( ) 2var
ii eσ

+= =∑e R W , where Wi is a 

diagonal matrix with 1
ijEDC −  as elements, 

EDCij being the effective daughter contribu-
tion of bull j in country i. 

Considering that * * *u = Qg + s , solutions for 
country means and genetic effects can be ob-
tained by solving the following MME: 
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Klei method 
 
By differentiating between local bulls and “international” bulls (i.e. bulls with progeny in >1 country), 
Klei (1995) rearranged [2] for a two-country case: 
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Here, the first subscript to Z and u identifies 

the country for which breeding values are pre-
dicted, and the second subscript is an identifier 
for type of bull: 1 for international bulls, and 
i+1 for local bulls in country i. 
 

The genetic effects for country 1 for the local 
bulls in country 2 (u13), and the genetic effects 
for country 2 for local bulls in country 1 (u22) 
are not needed to model the observations. 
Consequently, no equations for those effects 
need to be included in the MME. Since a rela-
tively small proportion of bulls are interna-
tional bulls, this parameterization of the model 
leads to a drastically reduced dimension of the 
MME compared to [3]. 
 

The only caveat of this approach is that G-1 is 
slightly more complicated to build (i.e. no 
longer 1 1

o
− −⊗A G ): 1 1

i i i ki d− −′= ⊗∑G t t G . 

Here, 1 1
i i ii

d− −′= ∑A t t , where the summation 
is over all animals in the pedigree, ti is the ith 
row of matrix T-1 which has ones on the di-
agonals and negative values to the left of the 
diagonal in the columns corresponding to the 
parents of animal i (Quaas, 1988), and 

( ) 1
k k k o k k

−′ ′=G H H G H H , where Hk is a 
picker matrix obtained by deleting a column 
from I2 corresponding to the country in which 

animal i does not have information (Klei, 
1995). This structure of G-1 is such that it is 
easy to build by processing the list of animals 
(with their parents) and an indicator in which 
countries the animal has information. 
 
 
Reduced model 
 
For animal model evaluations Quaas and Pol-
lak (1980) showed that the size of the MME 
can be reduced by setting up the equations for 
parents only. The technique is based on the 
general result that any random effect can be 
put into the residual term as long as they are 
not correlated to the random effects remaining 
in the model. Quaas and Pollak (1980) state 
that the MME formed from the reduced 
equivalent model will be exactly the same as 
those obtained by absorbing equations from 
the full set of equations. 
 

For a single observation, the statistical-
genetic model can be written as: 

 
ij i ij ijy c a e= + +  

 
Breeding value aij can be expressed as: 
 

( )½ij is id ija a a m= + +  [5] 
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where mij is the Mendelian sampling deviation 
for animal j in country i. Combining the previ-
ous two equations leads to: 
 

( )½ij i is id ij ijy c a a m e= + + + +  
 

For non-parents, mij and eij can be combined 
to form a single residual term: 

 
*
ij ij ije m e= +  

 
with variance: 
 

( ) ( ) ( )*
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In matrix notation, the observations for coun-
try 1 for local bulls without male offspring are 
modeled as:  

 
12 12 1 12 12 12n n n p n

c= + +y X Z u e , [6] 

 
and for local bulls with male offspring: 
 

12 12 1 12 12 12p p p p p
c= + +y X Z u e  [7] 

 
Combining [6] and [7], and adding the obser-

vations for country 1 for the international bulls 
leads to the following model for all observa-
tions in country 1: 
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The variance-covariance matrix of residuals 

in [8] becomes:  
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Absorption of dam 
 
Dams do not have own observations in MACE, 
but enter the picture through the additive nu-
merator relationship matrix which is based on 
sire-dam relationships. 
 

The variance-covariance matrix for Mende-
lian sampling effects is (block) diagonal (i.e., 
Mendelian sampling effects of any two differ-
ent animals are uncorrelated), and this effect 
can in a sense be viewed as a residual effect. 
 

Equation [5] is recursive, which can be ex-
ploited by decomposing it as:  

 

( )( ), ,

, ,

½ ½

½ ¼ ¼ ½
ij is i mgs i mgd id ij

is i mgs i mgd id ij

a a a a m m

a a a m m

= + + + +

= + + + +
 [9] 

If the bull j is the only offspring of this dam, 
then ½ idm and ijm can be combined to form a 
single Mendelian sampling term: 

 
* ½ij ij idm m m= +  

 
with variance: 
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( )
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The same principle as for the reduced model 

is applied here: a random effect not correlated 
to any other random effects in the model can 
be put in the residual.  
 

The rules for building A-1 based on sire-dam 
relationships stem from [5] (Henderson, 1976). 
Similarly, rules for building A-1 when absorb-
ing dam equations are based on [9]. In fact, 
these rules are essentially the same as for 
building A-1 based on sire-mgs relationships.  
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Ordering strategies 
 
Two different approaches for symbolic fac-
torization of the MME were compared: the 
multiple minimum degree (MMD) algorithm 
(Liu, 1985), which is the default in Fspak90 
(Misztal and Perez-Enciso, 1988), and a multi-
level partitioning algorithm implemented in 
the Metis software package (Karypis and 
Kumar, 1998). Several of the tuning parame-
ters of the Metis software were varied to in-
vestigate their effect on the (cpu-) time and 
memory needed to solve the MME. 
 
 
Material 
 
Two different data sets were used to illustrate 
the effect of the three strategies. First, the data 
set used for the AM analysis by Van der Linde 
and De Jong (2005) was available (referred to 
as Small). Second, the national evaluation re-
sults used in the Interbull test evaluation of 
March 2007 for Holstein, protein was used 
(referred to as Large). Countries had been re-
quested to provide bull dam pedigree in addi-
tion to bull pedigree that is routine collected. 
Summary statistics for both data sets are in 
Table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Results 
 
Small data set 
 
The rank of the MME was reduced by 36% 
and 22% when putting Mendelian sampling 
terms into the residuals for non-parent bulls 
reduced and absorbing equations for bull dams 
with just one progeny (Table 3). When both 
approaches were combined, the reduction was 
57%. 
 

The reduction in the number of non-zero ele-
ments in the MME ranged between 9 and 28%, 
which was much smaller than the reduction of 
rank (Table 3). This indicates that both tech-
niques lead to an increased density of the 
MME. 
 

The number of non-zero elements in the fac-
tor matrix was between 3 and 6% lower than 
in the reference situation. Unexpectedly, the 
combination of putting Mendelian sampling 
terms in the residual and using Metis to order 
the equations resulted into more non-zero ele-
ments in the factor compared with the refer-
ence situation. 
 

When using the MMD algorithm for sym-
bolic factorization, the alternative where Men-
delian sampling terms were put into the re-
siduals was fastest to solve the MME (Table 
3). When bull dam equations were also ab-
sorbed, slightly more time was needed to ob-
tain solutions, probably because the number of 
non-zero elements in factor was higher. 
 

The choice of ordering algorithm had the 
largest influence on the time needed to solve 
the MME (Table 3). The combination of the 
absorption techniques and Metis ordering 
roughly halved the time needed obtain solu-
tions.  
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 Summary of data sets 
 Small Large
No of countries 7 25
No of genetic groups 228 835
No of animals in pedigree 108648 197716
 Males 61987 105396
 Females 46870 92946
    with 1 offspring 32072 66977
    with >1 offspring 15008 26596
No of observations 60859 110034
No of bulls with obs. 56775 96502
 with obs. in 1 country 54024 89609
 with obs. in >1 country 2751 6893
   

 without offspring 55455 93901
 with offspring 1320 2601
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Large data set 
 
The rank was nearly halved by putting Mende-
lian sampling terms into the residuals for non-
parent bulls reduced and absorbing equations 
for bull dams with just one progeny (Table 3). 
Like for the small data set, the reduction in the 
non-zero elements in the upper triangular of 
the left hand side and the factor matrix was 
relatively smaller. The amount of workspace 
needed by Fspak90 reduced by 17 to 35%, but 
depending on the parameters for Metis. 
 

The time needed for solving the MME re-
duced by 17% when putting Mendelian sam-
pling into the residuals and absorbing bulldam 
equations, and using the default values for the 
parameters in Metis. Another considerable 
reduction was achieved after specifying differ-
ent parameters. For the Large data set it is 
worthwhile to note that increased time for or-
dering the MME can result in much faster nu-
merical factorization.  

 
 
 

 
 
Discussion 
 
For the Large data set, with data from 25 
populations, just over 60 thousand records and 
nearly 200 thousand animals in the pedigree, 
the time needed to solve the MME was just 
below 4 hrs for the fastest alternative. The 
program to solve the MME required approxi-
mately 5 Gb of RAM. With this performance it 
becomes feasible to consider MACE with sire-
dam relationships for routine international ge-
netic evaluations. 
 
Absorption of effects implies that all predicted 
breeding values are not directly solved through 
the MME. However, “missing” breeding val-
ues for the absorbed equations can be pre-
dicted by back-solving, and is implemented in 
the software. 
 

Table 3 Size of the mixed model equations and time for solving for combinations of three “reduc-
tion” approaches for the Small data set. 
Alternative NZE (million) Time (s) 

Klei MS Dam Order 

Rank 
Upper tri-
angular 

Factor 
Work space 
needed  by  
Fspak (Mb)

Total Order & 
symb fac 

Num fac

y n n MMD 147337 1.35 20.19 179 382.9 74.2 308.2 
y y n MMD 94069 1.12 19.46 169 338.9 56.3 282.1 
y n y MMD 115887 1.23 19.60 172 357.7 65.5 291.8 
y y y MMD 62619 0.98 19.66 168 343.7 44.5 298.8 
y y n Metisa 94069 1.12 21.23 189 251.5 1.9 249.2 
y y y Metisa 62619 0.98 19.00 165 199.9 1.5 198.1 
a Metis ordering with default values for parameters 
 
Table 3 Size of the mixed model equations and time for solving for combinations of three “reduc-
tion” approaches for the Large data set. 
Alternative NZE (million) Time (s) 

Klei MS Dam Order 

Rank 
Upper tri-
angular 

Factor 
Work space 
needed  by  
Fspak (Gb)

Total Order & 
symb fac 

Num fac

y n n MMD 390723 10.37 627.00 4.83 30806.9 281.3 30519.6
y y y Metisa 207514 9.29 517.56 4.06 19169.4 4.6 19159.8
y y y Metisb 207514 9.29 408.72 3.23 12812.0 60.2 12747.8
a Metis ordering with default values for parameters; b Metis ordering, obtained using 20 graph 
separators in each dissection step, and considering vertices with degree 50 times higher than aver-
age as dense and placing them at the bottom of the graph.
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Application of LU decomposition for direct 
solving of the MME (by Fspak90) may need to 
be given up due to non-linear increases of re-
sources required when amount of data and 
pedigree increases. Iterative methods, for ex-
ample preconditioned conjugate gradient, 
come into the picture; the absorption tech-
niques presented here are applicable in that 
case as well, especially when iteration is on 
the coefficient matrix, but the effect on the 
time needed to solve the MME may need to be 
re-evaluated. 
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