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Introduction 
 
The reduced animal model (RAM) was 
developed by Quaas and Pollak (1980) and 
allows equations to be set up only for 
parents in the MME and solutions for non 
parents obtained by back solving.  The 
advance in computing power has made the 
model less attractive for the prediction of 
breeding values. However considering the 
current trend towards the use of random 
regression (RR) models for genetic 
evaluation with several equations fitted per 
animal, the benefits of the RAM might be 
more pronounced.  Moreover, the 
estimation of variance components is 
generally more computationally 
demanding especially with the RR model 
and the tendency has been to fit a sire 
model or use Gibbs sampling.  White et al 
(2006) extended the RAM for the 
estimation of variance components in pig 
data, achieving a 30% reduction in 
computing time and a 70% reduction in 
memory relative to an animal model.  
However, this has not been extended to 
RR models.   The purpose of this paper is 
to briefly outline a random regression 
reduced animal model (RRRAM) for 
breeding value prediction and its 
application to the estimation of variance 
components. 
  
 
Materials and Method 
 
Breeding value prediction 
 
Let the RR model for a parent be of the 
form:    
 
 
 

y = Xb +  Фu  + Фp + e       [1] 
 
where y is the vector of  test day records or 
body weights at different ages, b is the 
vector of fixed effects, u and p are vectors 
of RR coefficients for random animal and 
permanent environmental (pe)  effects 
respectively. The matrix Ф contains 
covariates such as Legendre polynomials 
for animal and pe effects and X is the 
incidence matrix for fixed effects.  For the 
ith parent, let r be a row vector  with 1 as 
the only non-zero element in the ith 
position. Then the second term can be 
written as Zupar where upar is the vector of 
RR coefficients for parents and Z = r⊗Ф, 
the Kronecker product of r and Ф.  Thus 
for a parent, we have: 
 
y = Xb + Zupar + Фp + e [2] 
 

It is assumed that the variances of u 
and p are G and P respectively.  

 
For non-parents, equation [1] can be 

expressed as: 
 

y = Xb + 0.5(Фus + Фud) + Фm + Фp + e
   
where s and d are the sire and dam of the 
animal respectively and m is a vector of 
coefficients for Mendelian sampling (MS) 
effects. Again the second term is Zupar, 
with Z = r⊗Ф, where now r is a row 
vector of zeros with 0.5 in positions 
corresponding to the sire and dam of the 
animal. Thus for a non-parent we have: 
 
 y = Xb + Zupar + Фp* + e [3]
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where Фp* = Фm + Фp and p* has 
variance equal to k(1-F)G + P with k = 
equals ½ or ¾ or 1 if both , one or no 
parents are known respectively and F 
being the average inbreeding for both 
parents. The above implies that the same 
order of polynomial is fitted for both 
animal and pe effects.  
 

The application of RRRAM therefore 
involves applying equation [2] for parents 
and [3] for non-parents. 
 
 

Back solving for solutions of non-
parents: 
 
From [3] the RR coefficients for pe for 
non-parents include estimates of 
Mendelian sampling. Thus the RR 
coefficients for animal and pe effects must 
be solved for. This could be achieved in 
two ways. Firstly solutions for MS effects 
(m ) and pe can be solved for and then RR 
coefficients for an animal obtained as the 
sum of m  plus parent average.  From the 
mixed model equations for [1], the 
equations for im  and ip  are: 
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where R-1 is the inverse of the residual 
variance, yc =  

))(5.0( dsc uubXyy +−−= and k is 
as defined in the explanation for  equation 
[3]. 

 
Alternatively, iu  and ip  for an 

animal i could be obtained directly using 
the following equations: 
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where now yc =  )( bXyy −=c . 
 

Thus the order of the equations for 
each animal equals the sum of the orders 
of polynomials fitted for animal and pe 
effects. 
 
 
Application to a small data set  
 
Table 1 gives the test day fat yields of five 
cows in a herd with details of herd-test day 
(htd), days in milk and pedigree (DATA1). 
The data was analysed with a RR model 
fitting htd effects, a fixed lactation curve 
using Legendre polynomials of order 4, 
random animal and permanent 
environmental (pe) effects with Legendre 
polynomials of order 2. Genetic 
parameters used in the analyses were given 
by Mrode (2005) in example 7.2.1. 
 
The data was re-analysed using RRRAM.  

Variance component estimation 
 
The application of RRRAM for the 
estimation of variance components also 
involves the use of equations [2] where Z 

= r⊗Ф and r takes one of two forms 
depending on whether the animal is a 
parent or non-parent. However, an 
additional term is fitted for MS effects for 
non-parents. The variance for this extra 
term was constrained to be k(1-F)G.  
Equation [2] suggests a possible way to set 
data for the RRRAM.   For parents, 
identify the animal but set sire and dam  as 
‘missing’; for non parents, set the animal 
identity as missing but give the sire and 
dam. The RRRAM was implemented 
using ASReml (Gilmour et al., 2002). The 
RRRAM can be analysed by any software 
for variance components that allows for 
missing values in design matrices. When 
the number of parents with records is a 
small proportion of the total number of 
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animals, a simpler analysis can be 
implemented ignoring parents with 
records. This can be referred as the 
approximate RRRAM (White et al., 2006) 
and it often captures most of the 
information in the data set.  
 
 
Data analysis 
 
Variance components were estimated 
using 40371 body weight records on 2264 
Suffolk lambs collected from 1985 to 1994 
(DATA2). Lambs were weighed between 
7 and 24 times over a period of 150 days 
of age.  The number of sires and dams 
with progeny in the data set were 138 and 
716 respectively .The fixed effects 
consisted of year-sex and fixed growth 
curves nested within year-sex.  The fixed 
curves were fitted using polynomials of 
order 2 for age. Random animal and 
permanent environmental effects were 
fitted using polynomials of order 2.  Six 
classes of residual variances were fitted for 
weights recorded at days 2 to 25, 26 to 50, 
51 to 75, 76 to 100, 101 to 125 and 126 to 
159.The data set were analysed using RR 
and RRRAM. The pedigree for RR model 
and RRRAM consisted of 2807 and 1123 
animals respectively. 
 
 
Results and Discussion 
 
Breed value prediction 
 
The solutions for animal and pe effects 
using DATA1 for breeding value 
prediction with both models are shown in 
Table 2.  As expected RRRAM gave the 
same solution as the RR model but there 
was an 11% reduction in the number of 
equations to be solved with the RRRAM. 
Note that the solutions for non-parents for 
the permanent environment in Table 2 are 
for p* (pe + estimates of MS). The 
appropriate solutions for pe and animal 
effects for non parents were obtained by 
back solving (not shown) and they were 
the same as obtained by the RR model.  
The benefits of RRAM in terms of a 
reduction in the number of equations to be 
solved will be maximized in multivariate 
situations and in species such as pigs and 

chickens where smaller proportions of 
progeny become parents. 
 
 
Variance component 
 
The parameters estimated from DATA2 
using both model are given in Table 3.  
The estimates are the same for both 
models. The small size of the data set has 
not permitted reliable time differences to 
be recorded as both analyses run in about 
40 seconds. In addition, the current 
methodology of fitting Mendelian 
sampling term for non-parents in the 
RRRAM   has not resulted in reduction in 
number of equations.  A possible strategy 
yet to be investigated is defining in 
ASReml, the pe variance for non-parents, 
k(1-F)G + P in terms of two parameters, G 
and P, to be estimated separately. The first 
is constrained to be equal to G and the 
second to the pe variance of parents. 
 
 
Conclusion 
 
We demonstrated that it is feasible to 
analyse longitudinal data with a RRRAM 
both for breeding value prediction and 
variance components. This could result in 
substantial reduction in number of 
equations to be solved in multivariate 
situations and in species where small 
proportions of progeny becoming parents. 
The use of RRRAM for variance 
components has great potential and on 
going work will investigate better options 
of fitting the model. 
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Table 1.  Test day fat yields (TDY) for some cows in a herd. 
 
                                       ANIMALS      PEDIGREE 
                        4                  5                   6                       7                     8   
    DIM    HTD TDY     HTD TDY     HTD TDY    HTD TDY     HTD TDY      Cow    Sire        dam 
       4         1     17.0        1      23.0        6       10.4       4     22.8        1     22.2  4 1 2 
     38         2     18.6        2      21.0        7       12.3       5     22.4        2     20.0 5 3 2 
     72         3     24.0        3      18.0        8       13.2       6      21.4       3     21.0 6 1 5 
    106        4     20.0        4      17.0        9       11.6       7      18.8       4     23.0 7 3 6 
    140        5     20.0        5      16.2       10        8.4       8      18.3       5     16.8 8 1 4 
    174        6     15.6        6      14.0                               9      16.2       6     11.0 
    208        7     16.0        7      14.2                             10      15.0       7     13.0 
    242        8     13.0        8      13.4                                                     8     17.0 
    276        9      8.2         9      11.8                                                     9     13.0 
    310      10      8.0       10      11.4                                                    10    12.6 
 

_____________________________________________________________________                    
 DIM = days in milk, HTD = herd-test-day 
 
Table 2. Regressions coefficients for animal and permanent environmental effects. 
 
   Regression coefficients                                                                                                           
______________________________________________________________ 
Animal effects 
                 RR model                                  RRRAM 
                  
   1        -0.0193    0.0655   -0.0409      -0.0193    0.0655   -0.0409 
   2        -0.3181   -0.0394    0.0944     -0.3181   -0.0394    0.0944 
   3         0.3374   -0.0261   -0.0535       0.3374   -0.0261   -0.0535 
   4        -0.0926    0.0125   -0.1111     -0.0926    0.0125   -0.1111 
   5        -0.3845   -0.0716    0.2527     -0.3845   -0.0716    0.2527 
   6        -0.1480    0.0706    0.0507      -0.1480    0.0706    0.0507 
   7*       0.8263    0.0350   -0.2871 
   8*      -0.2053    0.0315    0.0761 
 
Permanent environmental (pe) effects 
                  RR model                               RRRAM 
   4        -0.5040   -0.3697   -1.5643      -0.5040   -0.3697   -1.5643 
   5        -1.0864    0.1529    1.0735      -1.0864    0.1529    1.0735 
   6        -2.0489    0.9857   -0.0310      -2.0489    0.9857   -0.0310 
   7*        3.6055   -1.0385   -0.4547       4.3371   -1.0258   -0.7405 
   8*        0.0337    0.2697    0.9765      -0.1156    0.2621    1.1287 
_____________________________________________________________ 
* Regression coefficients for animal 7 and 8 under the reduced RR model are obtained by back solving. 
Regression coefficients for pe shown for 7 and 8 include Mendelian sampling effects. 
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Table 3. Variance components estimates. 
Term                        RR model                RRAM 
 Animal effect  Pe effect Animal effect  Pe effect 
   aoao  6.494  16.27  6.494  16.27 
   a0a1  4.517    8.082  4.517    8.082 
   a0a2 -1.896   -7.009 -1.896   -7.009 
   a1a1  4.680     6.947  4.680    6.947 
   a1a2 -0.326    -1.763 -0.326    -1.763 
  a2a2   1.645      5.708  1.645     5.708 
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