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Introduction 
 
Since 1995, Interbull provides international 
predicted breeding values on the scale of each 
participating country using national genetic 
evaluation results. Input data quality constitutes 
a crucial issue in international genetic 
evaluations, as results from complex genetic 
and statistical analyses depend on it. Therefore, 
Interbull confers a great importance to the 
monitoring and the validation of input data 
(Fikse, 2004): data included into international 
evaluations are assumed to fulfil a number of 
stringent criteria. The consistency of 
evaluations is assessed by the comparison of 
breeding values from consecutive evaluations to 
identify changes larger than excepted based on 
statistical properties of breeding values (Klei et 
al., 2002). Genetic trends are estimated to check 
that national breeding values are unbiased 
(Boichard et al., 2002). Diversity and 
complexity of methods used in the various 
countries to analyze different traits has led to a 
situation in which adoption of new methods of 
validation of national data and/or models is 
necessary. One research project identified by 
Interbull in 2002 is the development of a 
general simulation tool to validate national 
genetic evaluation systems, and especially the 
development of a simulation environment to 
test breeding value prediction software. With 
this aim, a program was developed from a 
strategy described by R. Thompson (1997) to 
simulate data with known breeding values and 
phenotypes for a single trait animal model 
(Täubert et al., 2002), in such a way that BLUP 
solutions for breeding values should be equal to 
the simulated ones. This strategy was extended 
to a multiple trait animal model (Wensch-
Dorendorf et al., 2005). The latter algorithm 
requires that all animals, including males, have 
performance and that animals from the base 
generation belong to a “dummy” class of fixed 
effect.  
 

National genetic evaluation models for dairy 
traits are nowadays more and more often based 

on test-day models (TDM) instead of 305-day 
lactation models. Various models have been 
proposed. They differ in the way the lactation 
curve is modelled as a function of days in milk 
(DIM) - with fixed classes, parametric or semi-
parametric (splines) curves - in the way the 
genetic and permanent environment 
components are described (random regression 
using Legendre or other polynomials), and in 
the way heterogeneous residual variances are 
accounted for. Countries have developed their 
own TDM for routine genetic evaluations for 
their own population. Unfortunately, no general 
evaluation software is available for TDM for 
very large datasets. In several countries, a 
specific software had to be developed. But the 
software validation stage is made difficult when 
no reference software exists. Extension from 
the Thompson’s strategy to random regression 
situations was not straightforward. 
 

The aim of this paper is to present a general 
and flexible strategy to check the correctness of 
genetic evaluation software. This strategy 
differs from R. Thompson one but keeps the 
same basic idea : from simulated effects and 
residuals, performances are created in such a 
way that BLUP estimates from a correct 
evaluation software are equal to the simulated 
effects.  
 
 
Material and Methods 
 
Outline of the procedure 
 

The starting point is a pedigree file and a data 
file containing for each record, the relevant 
levels and/or covariables of all effects, the 
animal’s recoded number and permanent 
environment effect level and all other pertinent 
pieces of information (elements required to 
compute random regression coefficients, the 
record’s weight, the genetic, permanent 
environment and residual (co)variance matrices, 
etc.). These files can be real data sets. Then, the 
procedure to check genetic evaluation software 
can be divided into three steps: 
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1) for each effect as well as for one residual per 
observation, simulated values are computed 
following the approach described below, 
leading to a simulated performance for each 
record in the data file. 
 

2) these simulated performances are used as 
input data in the national genetic evaluation 
software. Estimates are obtained for all effects 
included in the model.  
 

3) estimates of fixed effects and predicted 
random effects from the national genetic 
evaluation software are compared with the true 
(simulated) ones. If resulting breeding values, 
permanent environment effects and all 
estimable contrasts of fixed effects are identical 
to the true ones then the genetic evaluation 
software can be considered as correct. 
 
Model 
 
Consider, as an example, the following linear 
model for a single trait (the extension to 
multiple traits is straightforward and is not  
considered here): 
 

∗= + + + +y Xb ZQg Za Wp e  
 

where y is the vector of observations, b is a 
vector of fixed effects, g is the vector of genetic 
group effects (e.g., for phantom parents 
groups), ∗a  is the vector of breeding values 
corrected for genetic group effects, i.e. with 

*E 0=  a  or alternatively [ ]E =a Qg  with 
*= +a Qg a  and *

0Var = = ⊗  a G G A , p is 

the vector of permanent environment effects 
with [ ] 0Var = = ⊗p P P I , e is the vector of 
random residual with var( ) =e R , X, Z and W 
are matrices relating y to the appropriate fixed, 
genetic and permanent environment effects, 
possibly through continuous covariates and Q is 
the matrix assigning animals in ∗a  to groups in 
g. In the case of random regressions, 0G  and 

0P  are the covariance matrices for the genetic 
and permanent environment effects, 
respectively and A is the additive genetic 
relationship matrix. R is a diagonal matrix of 
residual variances. In case of heterogeneous 
variances, for example as a function of DIM 
(e.g., Druet et al., 2003), the diagonal terms 
vary from one record to the next. 
 
The mixed model equations are: 
 

 

=
+

+
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X R X X R ZQ X R Z X R W X R yb
gQ Z R X Q Z R ZQ Q Z R Z Q Z R W Q Z R y
aZ R X Z R ZQ Z R Z G Z R W Z R y
pW R X W R ZQ W R Z W R W P W R y

   [1]

  
We want y - and therefore b, g, ,∗a  p and e 

needed to create y - to be simulated such that 
the solutions from the mixed model equations

are exactly the simulated b, g, ∗a  and p. 
Replacing y in the right hand side [1] by 

∗+ + + +Xb ZQg Za Wp e , e.g.: 
 

 
1 1 1 1 1 1− − − − ∗ − −′ ′ ′ ′ ′ ′= + + + +X R y X R Xb X R ZQg X R Za X R Wp X R e   

 
 

and developing the left hand side, the initial 
requirement leads after some simplifications to 
four conditions:  
 

=' -1X R e 0 , =' ' -1Q Z R e 0 , * =-1 ' -1G a Z R e  and 
=-1 ' -1P p W R e . 

 
To fulfil the first two conditions, a variable 

ε  is first simulated for all observations with 

any underlying distribution, for example, 
2(0, )i N εε σ∼ with some arbitrary variance 2

εσ . 
Then, two vectors β  and γ are computed as 
solutions of:  
 

 =
    
        

' -1 ' -1 ' -1

' ' -1 ' ' -1 ' ' -1

X R X X R ZQ β X R ε
γQ Z R X Q Z R ZQ Q Z R ε

. 
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If we choose = − −e ε Xβ ZQγ , it can be 
checked that =' -1X R e 0  and =' ' -1Q Z R e 0 . Note 
that b and g can be simulated using any 
underlying distribution: they do not influence e. 
The next step is to derive ∗a  such that 

( ) ( )( )* * 1 *  −= ⊗ = ⊗ ⊗-1 -1 -1 -1
0 0G a G A a I A G I a   

= ' -1Z R e . First, let ( ) *= ⊗-1
0u G I a . For 

example, if the random regression model 
includes three genetic terms (3 genetic values 
per animal, *

1 ja , *
2 ja  and *

3 ja ), { }i=u u  also 

includes three terms 1 ju , 2 ju , 3 ju  for each 
animal j which are linear combinations of the 
terms *

1 ja , *
2 ja , *

3 ja . For each i, we need to 

solve i i=-1 ' -1A u Z R e , This is easily done using 

the decomposition -1 -1 -1 -TA = T D T : first solve 
( ) i i=-1 -1 ' -1T D v Z R e  for iv  and then solve 

i i=-TT u v . These are 2 simple triangular 
systems in which at most two non-diagonal 
elements are nonzero. Finally, compute 

∗ = ⊗0a G u . 

We obtain p enforcing 
( )1

0
−= ⊗ =-1 ' -1P p P I p W R e  by choosing 

( )0= ⊗ ' -1p P I W R e . Finally, y is constructed as 
∗= + + + +y Xb ZQg Za Wp e . 

 
Application to a test-day model  
 
The data available were 47,492 first lactations 
of Montbéliarde cows from a sample of herds in 
Jura, i.e. 377,080 test-day observations 
recorded between September 1995 and August 
2005 in 28,020 herd test-day (HTD) 
combinations. The average number of test-day 
records per lactation was 8, with a minimum of 
5. On average 115 test-days records were 
known per herd and per year, with a minimum 
of 50 and a maximum of 431. 118 classes of 
calving month and 96 classes of calving age 
were considered. Days in milk had to be 
between 5 and 335. Information about gestation 
(days carried calf, DCC) was also available. 
The pedigree file included 102,339 animals 
with 8 groups of unknown parents. The 
approach described above was tested on the 
following simplified model, where for animal i, 
test-day j and DCC k, the performance recorded 
after t days of lactation is: 
 

 

( ) ( ) ( ) ( ) ( ) ( )
1 0 0 0

y = HTD DCC
NpNb Nc Na

ijkrs t j k l t rl p t sp m t im n t in ijkrs t
l p m n

b c a p eβ δ ξ α ψ
= = = =

+ ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +∑ ∑ ∑ ∑
  
where ( )yi j krs t  is the performance recorded, 

HT D j  is the jth fixed herd by test-date effect 
applied to all animals in the herd on test-date j, 
β is a regression coefficient related to the effect  
of the calf after k days of gestation on 
performance, the brl’s and the csp’s are fixed 
regression coefficients specific to calving 
month r and calving age class s, the aim’s are 
the genetic values for cow i, the pin’s are the 
permanent environment effects for cow i. ( )l tδ , 

( )p tξ , ( )m tα and ( )n tψ are continuous covariates 
depending on DIM. For this model, random 
regression curves and fixed regression curves 
for calving age were modeled using Legendre 
polynomials of order two (Nc = Na = Np = 2). 
Fixed regression curves for calving month were 
modeled using 6 knots splines at DIM 5, 20, 50, 

135, 245 and 335. ( )ijkrs te is the residual effect 
for each observation, with an heterogeneous 
variance continuously changing with DIM.  
 
 
Results and Discussion 
 
Correlations between simulated effects and 
estimates obtained with the national genetic 
evaluation software from the 377,080 TD 
records were 1.00000. Standard deviations for 
all effects included in the model were identical. 
For contrast analysis, the largest relative 
difference observed between “estimates” 
(estimable contrasts or predicted random 
effects) and true values (i.e. 478,468 estimated 
effects) was 4E-04 when convergence criteria 
used for BLUP evaluation (i.e. average solution 
change between two iterations) was 0.1E-05. 



 
 

 171

The software implemented for national 
evaluation is considered as correct for the tested 
model. 
 

In contrast with other approaches 
(Thompson, 1997, Täubert et al., 2002, 
Wensch-Dorendorf et al., 2005), the proposed 
strategy to generate breeding values and 
performances can be applied to actual data sets 
by simply replacing performance values by 
simulated ones. Its main specificity is that 
appropriate residuals are created when the other 
approaches do not simulate any residual.  
 

Moreover, the method can help to 
investigate relevance of different iterative 
algorithms and convergence criteria. Misztal et 
al. (1988) showed that the real accuracy of 
solutions could be far from the one suggested 
by some convergence criteria. Here, true 
solutions of the system are directly available. 
Relative average difference between current 
and true solutions as proposed by Misztal et al. 
(1988) can be computed at each iteration for a 
particular data set. 
 

For Interbull’s needs, two main advantages 
for such an approach can be highlighted: it 
enables any participating country to check the 
correctness of their national genetic evaluation 
software and to verify that the number of 
iteration rounds or the convergence criteria are 
adequate. 
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