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Introduction 
 
Current international genetic evaluations are 
based on across-country genetic correlations 
(rG). These rG are estimated rG that have been 
“post-processed” and may be influenced by 
prior expectations. Current post-processing 
rules are largely based on expert intuition. 
Applying similar structural models as Rekaya 
et al. (2001) to predict prior rG seems more 
desirable as it allows simultaneous 
consideration of several explanatory effects 
and because it is less subjective. 
 

The relative weight of the prior increases 
as the precision of the estimated rG decreases. 
In some cases, estimated rG have very low 
precision (e.g., Mark et al., 2005a), and in such 
cases, rG may be based almost entirely on prior 
information. Mark (2005) showed that 
international genetic evaluations can be 
obtained for “non-measured” traits, based on 
correlated information from measured traits 
included in current Interbull evaluations, if 
suitable rG are available among the measured 
and non-measured traits. Examples of non-
measured traits are milk production in Brazil 
and clinical mastitis in the United States. 

 
The aim of this paper is to develop 

multiple regression models to predict prior rG 
and to illustrate how these priors can be used 
in MACE inferences for both measured and 
non-measured traits. Emphasis will be on, but 
not limited to, milk yield for Holsteins. 
 
 
Material 
 
National genetic evaluation results for Holstein 
milk yield used in the March 2006 Interbull 
test evaluation were considered in this study. 
Variables potentially explaining variation 
associated with estimated rG were obtained 
from three sources, and accordingly, they 
could be grouped into 1) climatic variables, 2) 

production system indicators and 3) national 
genetic evaluation descriptors. 
 

The climatic variables were available from 
the Danish Meteorological Institute and were 
measured as the average monthly value during 
1931 to 1960 in the capital city (Cappelen and 
Jensen, 2001). For Germany-Austria, Slovenia 
and Switzerland, the average wind speed was 
set to the overall average of other countries due 
to missing information for these countries. The 
variables considered here were country 
averages of temperature (Celsius), range in 
temperature (from coldest to warmest month), 
rainfall (mm), range in rainfall, humidity (pct), 
range in humidity and wind speed (Beaufort). 

 
Production system indicators were 

available from ICAR’s yearly enquiries. The 
most recent statistics were taken from each 
country. A weighted average was used for 
Denmark, Sweden and Finland (weighted 
according to bulls included in the Interbull test 
evaluation). Holstein data were used when 
available; otherwise, statistics for all cows 
were used. The indicators that were considered 
here were: average milk yield (kg) fat and 
protein contents (%) from national milk 
recordings. Furthermore, Australia, Ireland and 
New Zealand were treated as countries with 
grassing during the whole year like in the 
current post-processing of rG. 

 
National genetic evaluation descriptors 

were taken from the forms that the national 
genetic evaluation units use to describe their 
evaluation models (Form GE; available on 
Interbull’s homepage). The descriptors that 
were considered here were: heritability, 
parities included (>3 treated as 3 parities), test-
day records or not, repeatability model or not, 
analysed simultaneously with biologically 
different traits or not and whether a fertility 
measure was included as an explanatory 
variable or not. Furthermore, the number of 
bulls with an evaluation in each of two 
countries (common bulls) was available. 
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Methods 
 
Across-country genetic correlations were 
estimated using EM-REML (Klei and Weigel, 
1998) as in official Interbull evaluations. 
Multiple linear regression was used to predict 
prior rG for milk yield from explanatory 
variables.  Power functions of estimated rG 
(rk

G, k=1, 2, 3, 4, 5, 6, 7) were considered as 
the dependent variable, in attempts to reduce 
skewness in the distribution of observations. 
The explanatory variables were expressed as 
ratios or binary variables. For continuous 
variables, a ratio was calculated so that the 
highest of the two country averages was in the 
denominator. Hence, 0 < ratio ≤ 1, and a high 
ratio always indicated that the variable in 
question was similar in the two countries. 
Likewise, a binary class variable was set equal 
to 1 if both countries belonged to the same 
class (e.g., both countries considered the same 
number of parities); otherwise, it was set equal 
to 0. The number of common bulls was used as 
is. All variables were constructed so that the 
regression coefficient was expected to be 
positive. The best model for rk

G was selected 
based on Mallow’s C(p) with the restriction 
that the regression coefficient associated with a 
variable must not be negative if the variable 
were to be included in the model. This 
restriction was imposed to make sure that the 
derived prediction formula would be 
biologically meaningful. 
 
 
Results and Discussion 
 
Prediction of prior genetic correlations. The 
dependent variable that gave the best fit was rG 
raised to the power of 5 (6 was equally good). 
The percentage of variation explained by the 
best model for r5

G was 47.1% whereas it was 
44.6% for rG. The best model for r5

G, based on 
Mallow’s C(p), was: 
 
r5

G = µ + b1(milk) + b2(grass) + b3(wind) + 
b4(temp) + b5(h2) + b6(par) + b7(CB) + ε    [1], 
 
where milk, grass, wind, temp, h2 and par were 
the ratio for milk yield, grassing, wind speed, 
temperature, heritability and number of 
parities, respectively, for the two countries 
corresponding to the estimated correlation, CB 
is the actual number of common bulls, and ε is 

the residual. The CB was used both as 
weighting factor in the analysis and as an 
explanatory effect because it was expected to 
be related to both the precision of the estimated 
rG and may explain the actual level of rG. The 
latter could be the case if it indicated similarity 
of the production systems or because low CB 
caused underestimation of rG (Sigurdsson et 
al., 2006). Using CB as a weighting factor 
gave a better model fit than using either the 
square root of CB or equal weights regardless 
of whether CB was included as explanatory 
effect or not. Akaike Information Criteria and 
backward selection yielded the same best 
model as Mallow’s C(p). The estimated 
regression coefficients for Model [1] are 
presented in Table 1. 
 

Model [1] tended to shrink prior rG 
towards the average rG. Thus, the standard 
deviation of estimated rG was 0.11, whereas the 
standard deviation of prior rG was 0.056. For 
countries with relatively low average rG, such 
as the South African Republic and New 
Zealand, the average prior rG was higher than 
the average estimated rG (Table 2). This may 
indicate that the model did not describe real 
differences in production systems or that the 
model partly corrected for biased rG. Certainly, 
the model may be improved. For instance, it 
may be possible to obtain statistics for the 
average herd size or for the average months on 
grass as well as variables highlighted by Zwald 
et al. (2003), such as peak milk yield. Member 
countries may provide this information. Also, 
in retrospect, we realised that we should have 
allowed a squared temperature term to be 
included in the final model although the 
regression coefficient was negative (p=0.03) 
because performance in very cold and very 
warm environments could be similar. 

 
The first four effects in Model [1] (i.e. 

milk, grass, wind and temp) can be interpreted 
as causing true genotype by environment 
interaction (G×E) whereas the remaining 
effects are not clearly associated with G×E. 
Heritability differences can be due to data 
quality and national evaluation models. The 
number of parities included in evaluations is 
often a pragmatic choice that is not necessarily 
related to the production system. As discussed 
above, CB is more difficult to interpret, but it 
is probably not fully associated with true G×E. 
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It may be desirable to eliminate sources of 
variation not fully related to G×E when 
generating prior rG, at least for non-measured 
traits. In Table 3, prior rG for NZL is presented 
both using Model [1] with the parameter 
estimates from Table 1 and using Model [2]: 
r5

G = µ’ + b1(milk) + b2(grass) + b3(wind) + 
b4(temp) + ε, where µ’ = µ + 0.144(1) + 
0.042(1) + 0.225(990) and variance = var(µ); 
i.e., h2, par and CB have been fixed at their 
maximum values (1, 1 and 990, respectively). 
Forcing variables not fully associated with 
G×E to be equal in two countries resulted in 
noticeably higher prior rG for New Zealand 
(Table 3). Weigel et al. (2001) used a uniform 
method on raw data to remove statistical 
artefacts, which may be better in theory but is 
challenging in practice.  The average rG for 
New Zealand, with countries included in this 
study and also in the study of Weigel et al. 
(2001), were 0.67, 0.86 and 0.87 for priors 
using Model [1], priors using Model [2] and 
estimates from Weigel et al., respectively. This 
verifies that Model [2] worked as intended for 
New Zealand. 
 
Use of prior genetic correlations. One feature 
of the outlined procedure to obtain prior rG is 
that standard errors are available. These can be 
used to give appropriate weights to each 
specific prior relative to the estimated rG. This 
and the fact that each prior mean is obtained in 
a more comprehensive way than for current 
Interbull practice should help to improve post-
processing of estimated rG, which is based on a 
simple weighted average of prior and estimated 
rG (Mark et al., 2005b). Finally, this approach 
gives a framework that enables prediction of 
prior rG for non-measured traits. 
 

Mark (2005) showed how knowledge of 
prior rG for non-measured traits enables 
predictions of international breeding values for 
such traits. Mark et al. (2006) showed that 
more efficient selection for clinical mastitis in 
countries without direct mastitis records can be 
achieved by using this method. However, in 
that study, too few rG were available for 
clinical mastitis to use the multiple regression 
technique to predict prior rG. Instead, the rG for 
milk somatic cell in the same two countries 
was used to guide the rG for clinical mastitis. 
Different approaches to predict prior rG (or at 
least different explanatory variables) are 
probably needed for different trait groups. 

Conclusion 
 
Prior across-country rG for milk yield were 
generated with reasonable precision (standard 
error ≈ 0.3) using multiple regression. Such 
priors can be used to improve post-processing 
of estimated rG among measured traits and to 
predict international breeding values for non-
measured traits. Prior rG increased noticeably 
(0.2 on average for New Zealand) when 
sources of variation not associated with true 
G×E were eliminated. Further investigation is 
needed to determine which priors should be 
preferred in international evaluations. 
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Table 1. Parameter estimates (b), their 
standard errors (SE) and significance level (p) 
for Model [1]. 
Variable b SE p(b=0) 
µ –0.586  0.11 0.000 
milk 0.491  0.11 0.000 
grass 0.103  0.03 0.001 
wind 0.235  0.07 0.001 
temp 0.187  0.07 0.013 
h2 0.144  0.07 0.032 
par 0.042  0.02 0.042 
CB (×10–3) 0.225  0.04 0.000 
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Table 2. Mean bias and mean squared error 
(MSE) of predicted priors on transformed and 
original scale for each country1. 
 Transformed  Original scale
Country Bias MSE  Bias MSE
AUS –0.041 0.017  –0.019 0.006
BEL 0.056 0.023  0.035 0.007
CAN –0.046 0.025  –0.005 0.005
CHE –0.032 0.036  –0.001 0.007
CZE 0.188 0.051  0.099 0.013
DEU 0.053 0.016  0.034 0.006
DFS –0.037 0.017  –0.009 0.003
ESP –0.062 0.025  –0.014 0.004
EST 0.108 0.030  0.102 0.028
FRA –0.094 0.036  –0.025 0.006
GBR 0.029 0.015  0.021 0.004
HUN 0.044 0.017  0.027 0.005
IRL –0.058 0.030  –0.013 0.008
ISR 0.094 0.021  0.065 0.010
ITA 0.007 0.016  0.016 0.005
JPN –0.103 0.038  –0.028 0.007
NLD –0.048 0.021  –0.009 0.004
NZL 0.106 0.016  0.087 0.012
POL –0.057 0.027  –0.014 0.005
SVN 0.016 0.033  0.028 0.012
USA –0.015 0.021  0.008 0.005
ZAF 0.178 0.037  0.148 0.027

1) Mean bias original scale: Σ(rGprior – rG)/n; 
transformed scale: Σ(r5

Gprior – r5
G)/n 

Table 3. Estimated genetic correlations (rG) 
with New Zealand, prior rG obtained without 
(prior) and with (prior+) forced harmonisation 
of arbitrary differences between countries; 
prior mean ± SD of 100,000 samples from 
Model [1] and [2], respectively. 
Country rG Prior Prior+ 
AUS 0.85 0.81 ± 0.14 0.88 ± 0.06 
BEL 0.66 0.64 ± 0.36 0.86 ± 0.08 
CAN 0.66 0.71 ± 0.28 0.87 ± 0.08 
CHE 0.72 0.61 ± 0.39 0.85 ± 0.08 
CZE 0.61 0.52 ± 0.46 0.83 ± 0.09 
DEU 0.58 0.68 ± 0.32 0.86 ± 0.07 
DFS 0.70 0.62 ± 0.38 0.85 ± 0.08 
ESP 0.68 0.57 ± 0.43 0.84 ± 0.08 
EST 0.47 0.69 ± 0.31 0.87 ± 0.07 
FRA 0.74 0.67 ± 0.33 0.86 ± 0.07 
GBR 0.71 0.74 ± 0.24 0.87 ± 0.07 
HUN 0.63 0.61 ± 0.39 0.85 ± 0.08 
IRL 0.81 0.87 ± 0.10 0.93 ± 0.05 
ISR 0.54 0.55 ± 0.44 0.83 ± 0.09 
ITA 0.67 0.65 ± 0.35 0.85 ± 0.08 
JPN 0.70 0.55 ± 0.44 0.84 ± 0.08 
NLD 0.69 0.67 ± 0.32 0.85 ± 0.08 
POL 0.69 0.70 ± 0.30 0.89 ± 0.06 
SVN 0.75 0.73 ± 0.27 0.88 ± 0.06 
USA 0.66 0.76 ± 0.21 0.84 ± 0.09 
ZAF 0.63 0.46 ± 0.50 0.84 ± 0.09 

 


