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Introduction

The aim of this study was to identify the most
appropriate function for modeling fixed and
random regressions in the Canadian Test Day
Model (CTDM) using test-day (TD) records up
to 365 days in milk (DIM).

In the current CTDM only TD records
recorded before 305 DIM are considered.
Legendre polynomials of order four are fitted
for both random and fixed regressions. High
additive genetic variances at the extremes of
lactation and negative correlations between the
most distant test-days have been reported in
random regression models (RRM) based on
lactation curves and Legendre polynomials. The
overestimation of variances at the edges of
lactation is often explained by mathematical
characteristics of polynomials. Splines have
been recently advocated as a good alternative to
Legendre polynomials (White et al., 1999;
Druet et. al.,, 2003; Silvestre et al., 2006),
mainly due to their limited sensitivity to the
data (records influence only parts of function in
their closeness) and direct interpretation of
parameters (Misztal, 2006).

This study compared four RRM based on
either Legendre polynomials or linear splines,
using a broad range of model comparison
criteria.

Material and Methods
Data

Variance components were estimated using
Canadian Holstein data (VC) created by a
random sampling of 50 herds (with >50 cows)
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from dataset used for routine genetic evaluation
in August 2006. The data consisted of 96,756
TD milk, fat and protein yields, and somatic
cell score (SCS) from the first three lactations
recorded from 1988 to 2006. Only TD records
with all traits present on a TD and DIM <365d
were included. The pedigree file contained
18,178 animals.

In order to compare stability of estimated
breeding values (EBV) between runs, two
datasets based on test-day records recorded
before August 2006 (D06) and August 2001
(D01) were used. Description of the data is
given in Table 5.

Models

Four random regression multi-trait, multi-
lactation models were compared. The general
formula for all models was as follows:

q q q
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= = =

All models included a fixed effect of herd-
test-date (HTD), a fixed regression on DIM
nested within age-season-region of calving
class (o) and random regressions for additive
genetic (B) and permanent environmental (y)
effects. Two seasons of calving and five regions
within Canada were defined.

The fixed and random regressions were
fitted either with Legendre polynomials of
order four (LEG) or with linear splines with
either four (SPL4), five (SPL5) or six (SPL6)
knots. The location of knots is given in Table 1.
Twelve classes of 30 DIM for residual variance
were defined for every lactation.



Table 1. Description of random regression
models.

Model Function® Position of knots

[5 65 245 365]
[5 65 125 245 365]

SPL4  Splines
SPL5
SPL6

qi
LEG Legendre 5
4
5

Splines
Splines 6

[5 65 125 245 305 365]

¥ _ type of regression function

* - order of polynomial in models with Legendre
polynomials or number of knots in models with
linear splines.

A Bayesian approach via Gibbs sampling
was carried out in order to estimate model
parameters. A single long chain of 100,000
samples was generated. The first 20,000
samples were discarded as a burn-in, and the
remaining samples were used to compute
posterior means of model parameters.
Convergence of Gibbs chains was monitored by
visual inspections of plots of samples.

Model comparison

The competing RRM were compared using the
Deviance Information Criterion (DIC) defined
by Spiegelhalter et al. (2002) as:

DIC=D+p,,

where D is the posterior expectation of the
Bayesian deviance (measure of the fit of the
model), pp is the effective number of
parameters (penalty for increasing model
complexity). The model with the smallest DIC
is preferable.

Two genetic evaluations were carried for
four RRM using D06 and DO1 data with
variance components previously estimated from
the VC data. Mixed model equations were
solved by iteration on data with Preconditioned
Conjugate Gradient algorithm and a block
diagonal preconditioner. Convergence criterion
was defined as average relative difference
between left and right hand side and was
required to be less than 9.9 x 107",

Goodness of fit of all models was
investigated by computing percentage of
squared bias (PSB), correlation between
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observed and predicted records (RHO) and
residual variance (RV) using D06 data.

The PSB (Ali and Schaeffer, 1987) for j"
trait and n™ lactation is defined as:

Z (yjnr - )7]nr)2

PSB,, ==L
Z (yjnr )2
r=1

where Yjqr is the r'" observed record of jth trait
and n" lactation, ¥ jnr 18 the ™ predicted record

of j" trait and n™ lactation and 0 is the number
of records.

Stability of EBV of competing models was
compared using an error of prediction (ERP)
defined by Sullivan et al. (2005) as:

> (ebvo6; — pa01,)’

ERP = {2 ,
n

where ebv06 is EBV calculated from D06, pa0l
is parent average predicted from DO1 and n is
number of bulls with no daughters in DO1 and
at least 25 daughters in D06. Prior to computing
the statistic, EBV from D06 were shifted by
subtracting the average change in EBV from
D01 to D06 for a set of bulls whose average
EBV was not expected to change. The
adjustment was based on 1,929 bulls with at
least 25 daughters in D01, no new daughters
and no more than 10 new granddaughters
between D01 and DO06.

Results

Posterior means of daily additive genetic
variance for milk, fat, protein yield and SCS
(Figure 2, 3, 4 and 5, respectively) of both
Legendre and spline RRM increased with
parity. Variances for LEG had a typical U-
shape (highest variance at the beginning and at
the end of the lactation and relatively constant
trend in the mid-lactation). Variance function of
linear spline models followed a parabolic shape
among knots. The overall trend of the variance
curve depends on number of knots and on
correlations between knots. The higher the
correlations the smoother curves were obtained.



The models with splines had smaller variances
at extremes of lactation than the LEG model in
production traits at second and third lactations.
Variances of SCS from LEG model was higher
along the whole lactation compared to models
with splines.

In all models, residual variance was the
highest at the beginning of lactation and
gradually decreased with DIM (Figure 6).
Smaller residual variance at the end of lactation
was observed in LEG and SPL6 compared to
SPL4 and SPL6.

Although the pattern of daily heritabilities
(Figure 7 to 10) was slightly different between
models, posterior means of average daily
heritabilities were similar across models
(Table 2).

Table 2. Posterior mean estimates of average
daily heritabilities for first lactation.

Model  Milk Fat Protein SCS
LEG 0.44 0.34 0.41 0.21
SPL4 0.44 0.34 0.41 0.18
SPL5 0.45 0.35 0.42 0.19
SPL6 0.45 0.36 0.42 0.19

Genetic correlations between day 5 and the
rest of lactation followed the same trend in all
models, i.e. high to moderate correlations at the
beginning of lactation and negative correlations
at the end of lactation (Figure 1).

Figure 1. Genetic correlations between 5 DIM
and the rest of lactation for milk yield in the
first parity.
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The best model based on DIC was the most
complex model (SPL6). Both LEG and SPL5
provided similar DIC. The SPL4 ranked the last
(Table 3).

Table 3. Estimates of Deviance Information
Criterion (DIC) and rank of models (Rank).

Model DIC Rank
LEG 255,808 2
SPL4 274,532 4
SPL5 258,924 3
SPL6 236,646 1

Total CPU time and number of rounds
required for running genetic evaluation with
D06 is given in Table 4. The LEG model
converged in the shortest total CPU time.
Convergence rate of this model was better than
convergence rate of SPL4 which has lower
number of parameter than LEG. Slower
convergence of RRM with linear splines
compared to RRM with Legendre polynomials
can be explained by higher -correlations
between knots compared to correlations
between Legendre coefficients. This weakness
of models with splines can be overcome by
diagonalization of covariance matrix of random
regression coefficients.

Table 4. Number of iterations, CPU time per
round of iterations and total CPU time needed
for predictions of EBV with D06 data set.

Number of CPU time Total CPU
Model . . per .
iterations . L time
iteration
LEG 667 1,076 8d 7h
SPL4 848 1,020 10d Oh
SPL5 804 1,345 12d 12h
SPL6 911 1,685 17d 18h
" 2.40 GHz processor

Similar values of PSB, RHO and RV were
found in all competing models (Table 6).
However, models with splines had the better

goodness of fit in all traits and lactations than
the LEG.



As shown in Table 6, the SPL6 model gave
the smallest ERP from all of models. The
difference between models were very small in
production traits at first lactation but were
significantly higher at later lactations and in
SCS at all three lactations, where all models
with splines had smaller ERP than the LEG
model. The better performance of models with
splines can be explained by smaller
overestimation of additive genetic variance
compared to the LEG model.

Conclusions

Both RRM with linear splines as well as RRM
based on Legendre polynomials tended to
overestimate additive genetic variances at
extremes of lactation. However, this
overestimation was smaller in models with
splines. Similar goodness of fit was provided by
both groups of models. Models with splines had
more stable EBV. This fact was especially
apparent in production traits at second and third
lactations and in SCS at all three lactations. The
model with six knots performed the best in all
the statistical criteria used for model
comparison. The drawback of this model was a
slow convergence which was caused by high
correlations between regression coefficients and
higher number of parameters.
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APPENDIX

Table 5. Description of data sets.

VC D06 D01

Number of TD records 96,756 45,120,202 26,832,479
Number of cows 6,094 2,650,096 1,564,228
Number of TD records per cow 16 17 17.1
Number of HTD classes 3,915 3,593,917 2,503,244

Mean SD Mean SD Mean SD
DIM 161 95 161 95 162 95
Milk yield (kg, kg?) 28.8 9.2 27.8 8.8 26.1 8.5
Fat yield (kg, kg?) 1.04 0.33 1.02 0.34 0.96 0.32
Protein yield (kg, kg?) 0.93 0.36 0.89 0.26 0.84 0.25
SCS 2.5 1.7 2.2 2.0 2.1 1.9

Table 6. Percentage of squared bias (PSB), correlation between observed and predicted data (RHO),
residual variance (RV) and error of prediction (ERP) of models for milk yield and somatic cell score
(SCS).

Trait Model Lactation 1 _ Lactation 2 Lactation 3
PSB RHO RV ERP PSB RHO RV ERP PSB RHO RV ERP
LEG 125 0.86 13.8 705 11.6 090 189 834 10.5 091 20.6 782
Milk SPL4 122 0.83 15.8 701 11.6 0.89 214 814 10.3 0.89 24.0 765
SPL5 126 0.86 13.7 709 12.0 091 18.5 825 10.8 091 20.0 773
SPL6 12.1 0.86 13.3 699 11.4 091 182 801 10.2 091 19.7 759
LEG 225 0.82 1.22 043 23.8 0.86 135 048 199 0.85 1.32 0.58
sCs SPL4 24.1 0.80 1.30 0.42 245 0.85 1.41 047 20.9 0.84 1.42 0.56
SPL5 225 0.82 1.21 0.4l 22.6 0.87 133 0.47 19.1 0.86 1.31 0.55
SPL6 224 0.82 1.19 040 232 0.87 131 0.45 19.5 0.86 1.29 0.52

“Error of prediction of 305 day breeding values for milk yield (Milk) and average daily breeding values for SCS
of 1,984 sires with no daughters in DO1 and at least 25 daughters in D06
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APPENDIX

Figure 2. Posterior mean estimates of additive
genetic variance of daily milk yield in first,
second and third lactation.
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Figure 3. Posterior mean estimates of additive
genetic variance of daily fat yield in first,
second and third lactation.
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Figure 4. Posterior mean estimates of additive
genetic variance of daily protein yield in first,
second and third lactation.
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Figure 5. Posterior mean estimates of additive
genetic variance of daily SCS in first, second
and third lactation.
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APPENDIX

Figure 6. Posterior mean estimates of residual variance of daily milk yield in first, second and third

lactation.
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Figure 7. Posterior mean estimates of
heritabilities for daily milk yield in first,
second and third lactation.
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Figure 8. Posterior mean estimates of
heritabilities for daily fat yield in first, second

and third lactation.
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Figure 9. Posterior mean estimates of
heritabilities for daily protein yield in first,
second and third lactation.
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Figure 10. Posterior mean estimates of
heritabilities for daily SCS in first, second and
third lactation.
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