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Abstract  
 
The information source method of Harris and Johnson (1998a) has been shown to lead to very good 
approximations of reliabilities in single trait genetic evaluations and for MACE models. The method 
relies on a formula which combines two independent sources of information, for example information 
coming from progeny and own performance. A multivariate extension of this formula is proposed and 
is applied to the computation of reliability matrices in test day models. Its use is illustrated in a small 
application, which underlines the excellent performance of the approach. 
  

 
 
1. Introduction 
 
By definition, the reliability iR  associated to a 
single trait estimated breeding value (EBV) iâ of 
an indivi-dual i is the squared correlation 
between iâ  and the true breeding value ai. It is a 
measure of accuracy of the evaluation. iℜ  is a 
coefficient taking a positive value between 0 and 
1. Using classical results from BLUP theory, we 
have:  
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aσ is the additive genetic variance and 
PEVi is the asymptotic prediction error variance 
for animal i, which under BLUP can be obtained 
from the mixed model equations (MME) as the 
diagonal element of the inverse of the MME 
coefficient matrix corresponding to the ai 
equation. In most practical cases, the exact 
computation of the inverse is not feasible. 
Therefore, several approximate methods have 
been proposed in the past to estimate iR under a 
single trait animal model (see Harris and 
Johnson, 1998a, for a short list). These usually 
involve the absorption into the equation of each 
animal i of equations corresponding to closely 
related animals and the equation of a 
contemporary group effect, excluding any other 
form of relationships between animals. As a 
result, these methods are known to almost 
systematically lead to upward biased estimates of 

iR  (e.g., Meyer, 1987; Misztal and Gianola, 
1988). Multiple trait extensions have also been 
proposed but with even greater biases. 
 

Harris and Johnson (1998a) proposed a 
different approach to approximate iR . They 
suggested to partition different sources of 
contributions to the reliability into independent 
parts that can be simply combined using basic 
selection theory principles. This approach 
somewhat mimics the partitioning of mixed 
model equations into contributions from the 
animal’s own performance, from progeny and 
from parent average to explain the construction 
of the final EBV (e.g., Wiggans et al., 1988).  

 
The basic equation used to combine the 

reliabilities xR and yR computed from 
independent sources x and y is: 

 
x y x y

x y
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1 R R

+ + −

−
=   [1] 

 
The approach also requires to compute the 

reliability of a part y of a combined source of 
information x+y, where x and y are independent 
(for example, in order to exclude the contribution 
of animal i out of the contribution of all progeny 
of the sire of i). A simple algebraic manipulation 
of [1] leads to:  
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Two striking features of the information 
source method are its simple implementation and 
its excellent performance: reliabilities are nearly 
unbiased when compared to the ones computed 
from the actual inverse of the mixed model 
coefficient matrix. Harris and Johnson (1998b) 
also proposed an extension to simple multiple 
trait models such as MACE models, again with 
very good results. Their approach is used for 
example to compute reliabilities of EBVs from a 
multiple trait BLUP evaluation for type traits in 
France. 
 

In the case of random regression models, the 
method is not directly applicable because one has 
to take into account the covariance between the 
different genetic effects simultaneously affecting 
a same performance. In a study aiming at 
computing multiple daughter yield deviations 
and their associated matrix of effective daughter 
contributions in test day models, Liu et al. (2002, 
2004) defined a matrix iℜ  that they called a 
“reliability matrix” as:  

 

 ( )
1

i
1

ˆ= var( ) var( )
     = 

−

−
ℜ i i i

i

a - a a
G - C G  [3] 

 
where ai and ˆ ia are the vectors of additive 
genetic effects and EBVs for animal i; G is the 
genetic (co)variance matrix and Ci the diagonal 
block of the inverse of the MME coefficient 
matrix corresponding to animal i. Note that this 
expression is also valid for multiple trait models. 
Cumulating information in a manner to some 
extent similar to Harris and Johnson (1998a), Liu 
et al. (2004) showed that reliability matrices and 
EDC matrices can be computed together.  
 

The purpose of this paper is to propose a 
formal generalization of the information source 
method to random regression models, using the 
same concept of reliability matrix as Liu et al. 
(2004). 
 
 
2. Methodology 
 
2.1 Reliability matrix 
 
First of all, an important drawback of the 
reliability matrix definition given in [3] is that 
usually iℜ  is not symmetric even though it is the 

product of two symmetric matrices. Instead, one 
can use: 
 

( ) ( )1 T 1 T
i i

− − − −ℜ = ℜ = = −
i i ia L G - C L I L C L  [4] 

 
where L is any matrix such that LL’=G, for 
example its Cholesky factor. Then iℜ  is always 
symmetric. Note that when G is decomposed as a 
function of its eigenvectors and eigenvalues (G= 
UΛU’ where U is the matrix of eigenvectors and  
Λ the diagonal matrix of eigenvalues) and if one 
chooses  1/2=L UΛ  in [4], the reliability matrix 
can be interpreted as a matrix generalisation of 
the reliability definition to canonical “traits” 
(uncorrelated genetic effects, each with a 
variance of 1).  More importantly, if one wants 
the reliability matrix 

ii( )ℜ Τa  of a (scalar or 
vector) function ˆ iTa  of the EBVs ˆ ia  - for 
example with T being a matrix with two rows 
corresponding to the coefficients for a 305d 
production EBV and for a persistency EBV - it 
can be simply derived from:  
 

ii( ) ( ')−ℜ = − 1 -T
Τa iI M TC T M   

 
where MM’ is a decomposition of TGT’, or 
equivalently:  
 

i ii( ) i( ) '  with = −ℜ = ℜ 1
Τa aH H H M TL  [5] 

 
 
2.2 Basic formula  
 
A matrix analogue of formula [1] will now be 
described. In the single trait case, expression [1] 
for two independent sources of information x 
and y can be rewritten as: 
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which is equivalent to:  
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or:       
x y x y

1 1 1 1 1 11 1 1
R +

= +
− − −

ℜ ℜ

 [7] 

 
Two straightforward multivariate extensions 

of [6] and [7] are: 
 

( ) ( ) ( )1 1 1x y x y x x y y 
− − −+ +ℜ −ℜ = ℜ −ℜ +ℜ −ℜI I I  [8] 

 
which involves non symmetric matrices, and: 
 

( ) ( ) ( )1 1 11 1 1x y x y 
− − −− − −+ℜ − = ℜ − + ℜ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦I I I

 [9] 
 
where the reliability matrices are always 
guaranteed to be symmetric.  
 

Using equation [9] where xℜ  and yℜ  are 
known matrices of small size, one can compute: 

 
  

( ) ( )1 11 1x y 
− −− −

= ℜ − + ℜ −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦Φ I I  

and ( ) 1x y 1 −+ −ℜ = +Φ I          [10] 
 

Similarly, the expression analogue to [2] is 
derived from [9] as: 

 

( ) ( ) ( )1 1 11 1 1x x y y  
− − −− − −+ℜ − = ℜ − − ℜ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦I I I   

 [11] 
 
We will also need to transform the 

contribution xℜ  from an own performance into a 
contribution to the reliability of a parent coming 
from a progeny. This is simply done replacing 

xℜ  in [9] by: 
 

 
x x
prog(*)

1
4ℜ = ℜ . [12] 

 
Again, the expressions [9] and [11] are valid 

for multiple trait models as well as for random 
regression models.  
 
 
 
 
 

2.3 Implementation of the information source 
method 

 
As an example, consider the following random 
regression model: 
 

( )
k kn m

it j k k m m it
k 1 m 1

y  fixed effects  cg a p  e
= =

= + + γ + κ +∑ ∑ ∑
   [13] 
 
where ity  is the tth  record of animal i, cgj is the 
jth contemporary group effect (e.g., a test day 
effect) , ( )fixed effects∑  is a sum of 
environmental effects which will be ignored in 
the reliability computation as they are usually 
precisely estimated with a lot of data, ak is the kth  
random additive genetic effect associated with 
the coefficient kγ , pm is the mth random 
permanent environmental effect associated with 
the coefficient mκ and eit is the error term with 
associated weight itω  (assuming heterogeneous 
residual variances). Steps similar to Harris and 
Johnson (1998a) are successively applied: 
 
1) First, the contribution ( )ioℜ  to the reliability 

coming from the own performance of animal i is 
calculated and simultaneously cumulated into a 
contribution to the reliability of its sire 
( )prog(sire)ℜ  and dam ( )prog(dam)ℜ  from progeny, 

using expressions [9] and [12]. This is done in 
sequential order, from the youngest animal to the 
oldest one.  
 

To compute 
ioℜ , a matrix block Bi 

corresponding to the equations for genetic 
effects and permanent effects for animal i is 
constructed, after absorption of the 
contemporary group contribution: 

 

 
⎡ ⎤
⎢ ⎥
⎣ ⎦

i i

i i

' -1 -1 ' -1
i i i i

' -1 ' -1 -1
i i i i

Z S Z +G Z S W
W S Z W S W +P

 [14] 

 
where Zi and Wi are incidence matrices, P is the 
(co)variance matrix for permanent 
environmental effects, Si is the diagonal matrix 
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resulting from the absorption of contemporary 
group effects. The elements of Si are obtained by 
first reading the data file and cumulating 

itω∑ for each contemporary group, then using 

2it
it e

it
1 −⎛ ⎞ωω − σ⎜ ⎟ω⎝ ⎠∑  as new weight when 

constructing Bi. When all the blocks Bi have 
been constructed, each expression [14] is 
reduced to a nk x nk block *

iB  by absorbing the 
permanent environment part into the genetic part 
and transformed into 

ioℜ using an analogue of 
expression [4]: 
 

 ( )
i

1 * T
o

−− −ℜ = − iI L B L   [15] 

 
2) After step 1), prog(sire)ℜ  and prog(dam)ℜ  only 
include information from daughters. To include 
information from grand-progeny and further 
generations down, the prog(*)ℜ  matrices are 
cumulated into their own parents’ ones, again 
from the youngest animal to the oldest one, 
using [9].  
 
3) At the same time, progeny and own 
performance contributions are combined 
together (still using [9]) into a reliability matrix 

io prog(i)+ℜ .  
 
4) Finally, the pedigree information is added, 
going from the oldest animal to the youngest. 
Two steps are needed. First, the parent 
information ( sire prog(sire)+ℜ for example for a sire) 

must be made independent from the 
progeny+own information ( )( i)

sire prog(sire)
−

+→ ℜ . 

This is done using equation [11]. Secondly, the 
contributions (assumed independent) from the 
sire and dam of i are added and combined to 

io prog(i)+ℜ . 

 
 
3. Numerical application 
 
3.1. Data 
 
The proposed approach was applied to two data 
sets, with the same model. Data set 1 is a small 
subset of data set 2, which includes 21,137,289 
test-day milk yields from 1,119,201 
Montbéliarde cows. Data set 1 included  221,773 

TD from 12,659 cows from 30 herds (513 herd-
year combinations), daughters of 295 sires with 
on average 42 daughters (range: 2 to 852). The 
pedigree files included a total of 23,410 animals 
for data set 1 and 1,562,349 animals for data set 
2. 
 
 
3.2.  Model 
 
The model considered is the one which is likely 
to be applied for test day evaluations in France 
in a near future. It is of the same form as model 
[13] and will not be detailed here. It includes 4 
genetic effects and 4 permanent effects. The 
(co)variance matrices are derived from Druet et 
al. (2003, 2005). They were estimated after 
fitting a 5th order Legendre polynomial for both 
genetic and permanent environment effects to 
first lactation data, reducing the resulting matrix 
from rank 5 to rank 2. The two eigenvectors 
computed had a nice interpretation 
(corresponding to EBVs for average production 
and persistency) and were used as coefficients of 
the random effects for second and third 
lactations in a later analysis including 3 
lactations. This led to 6x6 genetic and permanent 
environment (co)variance matrices each with 
two small eigenvalues, so a rank reduction to 4 
genetic and 4 permanent genetic effects was 
performed. Note that the first two of these 
effects relate to first lactation only. In other 
words, the *

iB  matrices for cows with only first 
lactations have their 3rd and 4th  rows and 
columns equal to 0.  
 

The reliability matrix iℜ  was computed for 
each individual. As an illustration of the use of 
formula [5], the reliabilities associated with 3 
traits - cumulative 305d production in first 
lactation, and cumulative 305d production and 
persistency averaged over the first three 
lactations - were derived from each iℜ . 
 
 
3.3.  Results 

 
For data set 1, it was possible to invert the MME 
coefficient matrix (of size 147,607 when the only 
fixed effects considered are the test-day effects). 
This allowed the computation of “true” 
reliability matrices using expression [4], in 
which the Cholesky factor of the (here dense) G 
matrix was used. The information source method 
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took 6 seconds. Some statistics reflecting the 
resemblance between “true” and approximated 
elements of the reliability matrices are given in 
table 1 for the diagonal elements and in table 2 
for off-diagonal ones.  

 
The diagonal elements of the reliability 

matrices ranged from 0 to 0.992. The 
approximated “diagonal” reliabilities were nearly 
unbiased and very highly correlated to the true 
ones. Only the third term was slightly less 
satisfying. This may be related to the off-
diagonal element (2,3) which is poorly estimated 
(table 2). Off-diagonal elements are on average 
very close to 0 and the approximated ones are 
again nearly unbiased. With the exception of 
element (2,3) which “connects” information 
obtained in different lactations (1 vs 2 or 3), the 
correlation between “true” and approximated off-
diagonal elements is high. 

 
The estimated reliabilities for the three 

illustrative traits presented are also in very good 
agreement with the corresponding “true” 
reliabilities. 

 
Table 1. Comparison between the diagonal 
elements of the “true” and estimated reliability 
matrices for data set 1  (23410 reliability 
matrices). 

 
Element 

or 
trait 

Averag
e true 
value 

Average 
differenc

e 

Correlatio
n 

Regressio
n slope 

1 0.450 
± 0.22

6 

0.0004 
± 0.007

0 

0.9996 1.003 

2 0.389 
± 0.19

8 

0.0021 
± 0.006

3 

0.9954 1.006 

3 0.335 
± 0.17

9 

-0.0154 
± 0.025

2 

0.9904 0.966 

4 0.295 
± 0.16

4 

-00019 
± 0.008

9 

0.9985 0.996 

305d 
lact.1 

0.434 
± 0.21

6 

-0.0055 
± 0.014

2 

0.9978 0.990 

Average  
    305d 

0.358 
± 0.19

3 

0.0085 
± 0.001

7 

0.9959 1.019 

Average 
Persistenc

y 

0.317 
± 0.17

0 

-0.0047 
± 0.010

0 

0.9983 0.989 

Table 2. Comparison between the off-diagonal 
elements of the “true” and estimated reliability 
matrices for data set 1.   

 
Elemen

t 
Average 
“true” 
value 

Average 
differenc

e 

Correlatio
n 

Regressio
n slope 

1,2 -0.004 
± 0.02

0 

0.0026 
± 0.001

6 

0.997 0.968 

1,3 -0.015 
± 0.02

1 

-0.0002 
± 0.012

6 

0.811 0.765 

1,4 0..005 
± 0.00

6 

-0.0010 
± 0.0026 

0.905 0.833 

2,3 -0.033 
± 0.03

5 

0.0199 
± 0.033

6 

0.306 0.263 

2,4 -0.014 
± 0.02

3 

-0.0021 
± 0.009

5 

0.915 0.880 

3,4 -0.037 
± 0.02

6 

0.0040 
± 0.006

5 

0.971 0.930 

 
For the second data set, the 1,562,349 

reliability matrices were computed in 9 minutes 
and 1 second. 
 
 
4. Conclusion 

 
Based on the numerical example, the information 
source method to compute reliabilities seems 
very attractive both in terms of accuracy and 
computing time to obtain reliabilities in test-day 
models. Other applications of the extension 
proposed involve multiple trait evaluations and 
models with direct and maternal effects. Other 
by-products of the method may also be 
improved, for example the computation of EDC 
matrices (Liu et al., 2004).  
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