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Abstract 
 
Models that include genomic relationships can predict genetic effects more accurately than those that 
use expected relationships from pedigrees. Relationship matrices can estimate the expected fraction of 
genes identical by descent, the actual fraction of DNA shared, or the fraction of alleles shared for loci 
that affect a particular trait. Each may be a valid answer to the question “Are two individuals related?” 
Several options are available for including genomic relationships in genetic evaluations. 
 
 
Introduction 
 
Genomic relationship matrix G uses genotypic 
data to estimate the fraction of total DNA that 
two individuals share. Measures of genomic 
similarity are useful in selection and parentage 
testing (Dodds et al., 2005) and have been used 
to manage genetic diversity (Caballero and 
Toro, 2002) because of advantages over 
measures of genetic distance. Estimators of 
genomic relationships were compared (Wang, 
2002) and provided similar results unless the 
population was small or the markers had many 
alleles. 
 

Additive genetic relationship matrix A uses 
only pedigree data to calculate probabilities 
that gene pairs are identical by descent 
(Wright, 1922). Malécot (1948) derived the 
same probabilities without crediting Wright 
and showed how to correct the probabilities for 
mutation, which “is insignificant for close 
relatives” but could become important “when 
very distant ancestors are involved.” Expected 
relationships are widely used in statistical 
analyses and in animal breeding because the 
matrix inverse is sparse and simple to obtain 
(Henderson, 1975), even for millions of 
individuals. 
 

Relationship matrix T estimates fractions of 
alleles of quantitative trait loci (QTL) that two 
individuals share only for loci that affect a 
specific trait. The term QTL often refers to loci 
with the largest effects but includes all loci that 
affect the trait in this paper. Matrix T requires 
both phenotypic and genotypic data to estimate 
QTL locations and allele effects, which in most 
cases cannot all be known. However, marker 

genotypes may be weighted across loci by size 
of allele effects to estimate their total genomic 
effect on a trait. 
 
 
How related are relatives? 
 
The proportion of alleles that is identical by 
descent is a function of the number of loci that 
influence the trait. If only one locus is con-
sidered, full sibs have a 0.25 chance of sharing 
two alleles, 0.5 chance of sharing one allele, 
and 0.25 chance of sharing neither allele. With 
two loci, the probabilities are 0.0625, 0.25, 
0.375, 0.25, and 0.0625 of sharing zero, one, 
two, three, or four alleles, respectively. The 
general formula for k alleles in common with n 
independent loci (and with ! denoting factorial) 
is 0.5nn!/[k!(n−k)!]. For larger numbers of loci, 
the distribution of full-sib alleles in common 
approximates normal with 50% ± 50%/(2n)0.5. 
Results for full sibs and for half sibs, who have 
one rather than both parents in common and 
share half as many genes, are in Table 1. 
 

 
Table 1. Mean and standard deviation of 
alleles shared by full sibs and by half sibs. 

Percentage of alleles shared Independent 
loci Full-sib 

mean (SD) 
 Half-sib 

mean (SD)
1 50 (35.4)  25 (17.7) 
5 50 (15.8)  25 (7.9) 
10 50 (11.2)  25 (5.6) 
50 50 (5.0)  25 (2.5) 
100 50 (3.5)  25 (1.8) 
Infinite 50 (0.0)  25 (0.0) 
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Standard deviation for percentage of alleles 
shared by full sibs does not decline below 
about 3.5% as number of loci becomes large 
because the loci are actually linked rather than 
independent. Alleles on the same chromosome 
are inherited together unless a crossover occurs 
between them, which causes closely linked 
genes on a chromosome segment to act as a 
single allele. Simulation showed that 100 un-
linked multiallelic loci or 300 unlinked bi-
allelic loci would provide the same relationship 
pattern as ≥10,000 linked loci that were distri-
buted randomly across 30 pairs of chromo-
somes. Table 1 is based on multiallelic loci and 
shows that actual covariances among relatives 
are sufficiently different from expected values 
used in Wright’s (1922) relationship matrix to 
increase reliability of quantitative predictions, 
especially as the numbers of relatives increase. 
 

Relationships of parents to progeny are 50% 
± 0% because each progeny receives exactly 
half of the two parents’ autosomal DNA from 
the two gametes. Male or female progeny may 
be more related to their father or mother, 
respectively, if inheritance of mitochondria, 
genes on the X and Y sex chromosomes, or 
gametic imprinting are considered. Of course, 
genotyping mistakes, pedigree errors, and 
mutations may also occur. Relationships of 
grandparents to grandprogeny are the same as 
those in Table 1 for half sibs. 
  
 
Unrelated individuals? 
 
Pedigrees may include many generations but 
must end eventually. Traditional models as-
sume that the base or founding individuals are 
unrelated and share no genes in common, but 
genomic analyses reveal that individuals in the 
earliest recorded generation always share genes 
from more remote ancestors. Alleles shared 
through a known ancestor are said to be iden-
tical by descent, and additional alleles may be 
alike in state if inherited from a common un-
known ancestor or if mutation resulted in the 
same gene sequence or function. In the tradi-
tional A, unrelated individuals have 0 for off-
diagonal elements and 1 for diagonal elements, 
but they may have more or fewer alleles in 
common and more or less heterozygosity than 
average when actual genotypes are examined.  
 

Genomic relationships 
 
Linear model predictions of total genetic 
effects can be obtained from either mixed 
model or selection index equations. Let vector 
u contain the additive genetic effects for each 
allele or each marker, and let M be the inci-
dence matrix that specifies which alleles each 
individual inherited. Elements of M are 0 or 1 
in a gametic incidence matrix, and 0, 1, or 2 in 
a genotypic matrix. Off-diagonals of MM′ 
show the number of alleles shared by relatives, 
and diagonals show the individual’s relation-
ship to itself (inbreeding). In contrast, off-
diagonals of M′M show how many times two 
different alleles were inherited by the same 
individual, and diagonals show how many 
individuals inherited each allele. Matrix M′M 
has a larger dimension than MM′ when the 
total number of alleles or haplotypes is larger 
than the number of individuals (e.g., with 
dense genotyping).  
 

Let P contain frequencies pi of the second 
allele at each locus such that column i of P is 
1pi for gametic models or 2pi for genotypic 
models. Subtraction of P from M gives Z, 
which is needed to set the expected value of u 
to 0. Subtraction of P gives more credit to rare 
alleles than to common alleles when calcula-
ting genomic relationships. Also, the genomic 
inbreeding coefficient is higher if the indi-
vidual is homozygous for rare alleles than for 
common alleles. 
 

Allele frequencies in P should be from the 
unselected base population rather than those 
that occur after selection or inbreeding. Geng-
ler et al. (2007) presented a simple strategy to 
obtain such frequencies. An earlier or later 
base population can lead to greater or fewer re-
lationships and to more or less inbreeding. For 
populations with more than one subpopulation, 
base relationships and inbreeding can be set to 
0 for the two least related subpopulations 
(VanRaden, 1992).   
 

Relationship matrix G is ZZ′/[2Σpi(1−pi)]. 
Division by 2Σpi(1−pi) makes G analogous to 
A. Matrix G is positive semi-definite but can 
be singular. Two individuals can have identical 
genotypes if limited numbers of loci are con-
sidered, and identical twins cause singularity 
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even in A. Matrix G is also singular if the total 
number of alleles is less than the number of 
individuals genotyped. The rank of ZZ′ cannot 
exceed the columns in Z if Z has fewer 
columns than rows. An improved, non-singular 
matrix, Gw, can be obtained as a weighted (w) 
average, wG + (1−w)A, if numbers of markers 
are limited. 
 
 
Genomic models 
 
If each individual is measured for a trait and 
the inheritance of all alleles is known, then 
data vector y can be modeled as:  
 
y = Xb + Zu + e, 
 
where Xb is the mean and e is a random error  
vector with variance equal to 2eσR . The sum 
Zu over all marker loci then is assumed to 
equal the vector of breeding values (a). With 
many markers, that should provide a good 
approximation to the true, unobservable bio-
logical model a = Qq, where Q and q are the 
incidence matrix and effects of only loci that 
affect the trait. 
 

Mixed model estimates of u (û) are 
obtained by using matrix 1−′Z R Z, vector 

1 ˆ( )−′ −Z R y Xb , and a scalar k defined as the 
ratio 2 2/e uσ σ , which equals 2Σpi(1−pi) times the 
ratio 2 2/e aσ σ . Estimated breeding values â then 
are obtained as ˆZu, and the resulting equations 
are: 
 

1 1 1 ˆˆ [ ] ( )k− − −′ ′= + −a Z Z R Z I Z R y Xb . 
 

Selection index equations predict â directly 
using G. Selection index equations are con-
structed as the covariance of y and a multiplied 
by the inverse of the variance of y multiplied 
by the deviation of y from ˆXb  or:  
 

2 2 1 ˆˆ ( / ) ( )e aσ σ −= + −a G G R y Xb . 
 

The selection index and mixed model equa-
tions provide the same estimates of â if the 
same estimates of ˆXb  are used (Henderson, 
1963). Thus, selection index and mixed model 
methods should be identical in many genomic 
analyses because daughter yield deviations or 

de-regressed proofs are the data source, and the 
means already have been removed. However, 
more numerical problems may result from 
using mixed model equations (Lee and van der 
Werf, 2006). Estimates of û could also be ob-
tained if needed using the selection index 
equations by substituting Z′ for the left-most G 
in the expression above, which shows again 
that â is the sum ˆZu over all alleles that the 
individual inherited. 
 

Another equivalent model presented by 
Garrick (2007) could be more efficient than 
selection index because G can be inverted just 
once and then additional traits can be 
processed using iteration: 
 

1 1 2 2 1 1 ˆˆ ( / ) ( )e aσ σ− − − −= + −a R G R y Xb . 
 

Gains in reliability from using G instead of 
A in the mixed model depend on how large the 
differences are between traditional average 
relationships and the more exact fractions of 
genes in common available from genomic 
studies. Non-linear models increase reliability 
further (Meuwissen et al., 2001) by using prior 
information about the expected distribution of 
QTL effects (Vq). In the linear model, marker 
effects are assumed normally distributed. In the 
non-linear model, large effects are regressed 
less and small effects more so that T, which 
equals QVqQ′ divided by the total genetic vari-
ance, can be approximated better. Estimation 
of haplotype effects instead of single-marker 
regression can also improve accuracy. 
 
 
Reliability of predictions 
 
Average reliability and accuracy was deter-
mined from simulated data using 50,000 
markers and varying numbers of full sibs. The 
predictions were for an individual with geno-
type known but no data, whereas breeding 
values of the sibs were assumed to be mea-
sured almost without error (reliability = 0.99) 
to provide an upper limit regarding the relia-
bility that they provide for this individual. 
Squared correlations of breeding value with 
estimated breeding value for 100 replicates are 
in Table 2 for comparison with theoretical 
reliability. Linear models that include G or 
non-linear models that better approximate T 
can obtain much higher reliability than tradi-
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tional models that include A. Villanueva et al. 
(2005) also reported that genomic relationships 
constructed using large numbers of markers 
increase reliability even if no major genes 
affect a trait. 
 
 
Conclusions 
 
Genetic similarity can be defined in several 
ways using pedigree data, genotypic data, 
phenotypic data, or combinations of those data. 
Use of exact fractions of shared genes in G can 
provide more accurate predictions than use of 
the expected fractions in A. Non-linear models 
can change the weights on individual markers 
to match actual fractions of shared QTL alleles 
in T more closely. Full sibs may actually share 
45 or 55% of their DNA rather than the 
expected 50%. Accounting for those small 
differences in the relationship matrix and 
tracing individual genes can greatly increase 
reliability, especially if the number of geno-
typed individuals is large. 
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Table 2. Average reliability using traditional
(A) or genomic (G) relationships with 100 loci
assumed to affect the trait. 

Reliability Full sibs 
A G 

1 0.250 0.261 
10 0.454 0.502 
100 0.495 0.773 
1000 0.499 0.970 


