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Abstract 
 
Deterministic genomic models, including a high number of random marker effects and a polygenic 
effect, were presented for genomic evaluation of dairy cattle. The genomic models covered a linear 
BLUP model assuming equal variance for all markers and five non-linear genomic models allowing 
variable marker variances. Marker and phenotypic data were obtained from a workshop for 
investigating the alternative genomic models. A polygenic model was fitted to the simulated data 
additionally, in order to compare conventional and genomic evaluations. Although the genomic 
models differ in estimates of marker effects, all of them resulted in relatively high correlation between 
true and estimated genomic breeding values for the training data set, ranging from 0.85 to 0.90. For 
the validation data set, difference in the correlation increased among the genomic models. The 
polygenic model was clearly the worst model, with lowest correlation between true and estimated 
genomic breeding values, particularly for the validation set. The ranking of the genomic models may 
change for real data. A brief status report was given on the German genome project GenoTrack.  
 
 
1. Introduction 
 
Genomic selection (Meuwissen et al., 2001) 
based on massive marker information, e.g. 
single nucleotide polymorphism (SNP), can 
increase accuracy of pre-selection of breeding 
animals significantly. Worldwide application 
of genomic selection has started recently 
(Daetwyler et al., 2007; De Roos et al., 2007; 
Ducrocq, 2008; Harris et al., 2008; VanRaden, 
2008). The objectives of this study were to 
develop a genomic enhanced genetic 
evaluation system for dairy cattle, and to 
compare alternative genomic evaluation 
models using a simulated data set.  
 
 
2. Materials and Methods 
 
2.1. Data materials from a simulation study  
 
Marker and phenotypic data were obtained 
from a QTL-MAS Workshop in 2008 (Lund et 
al., 2008). A total of 4665 animals were 
genotyped for 6000 bi-allelic markers that 
were evenly located on six chromosomes. The 
genotyped animals from the training data set 
came from four discrete generations with 165 
animals in generation 0 and 1500 animals in 
generations 1 to 3 each. Model for generating 
phenotypic records included, besides a random 
error effect, 48 QTLs; and none of them were 

located on chromosome 6. 16 biggest QTLs 
explained 96.3% total genetic variance. A 
validation data set contained three generations, 
generations 4 to 6, of genotyped animals 
without phenotypic records, 400 animals per 
generation. A swine-type pedigree structure 
was chosen in the simulation, 45 sires were 
randomly mated to 10 dams to generate 10 
progeny each, resulting 45 sires (450 dams) 
with 100 (10) genotyped progeny each.  
 
 
2.2. Genomic evaluation models  
 
A statistical model was applied to both 
genotypic and phenotypic data of genotyped 
animals: 
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where iq  is a deregressed proof (DPRF) or 
daughter yield deviation (DYD) of a bull i or a 
yield deviation (YD) of a cow i, for the 
simulated data set iq  is the trait value, μ  is a 
general mean, ia  is polygenic effect of animal 
i, p is number of fitted bi-allelic markers 
( pj ,,1L= ), ijz  is genotype value (-1 and 1 
for two homozygotes and 0 for heterozygote) 
of marker j of animal i, ju  is random 
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regression coefficient for marker j, and ie  is 
residual effect for the record of animal i. A 
small fraction of genetic variance, usually not 
more than 1%, was assumed for modelling the 
polygenic effect. Fitting a polygenic effect can 
avoid the problem that the markers captured 
the relationship among animals if the genomic 
model did not include the polygenic effect 
(Habier et al., 2007), and thus it can make the 
estimates of marker effects more persistent 
over generations (Solberg et al., 2008). 
Because DYDs resulting from a multi-trait 
model, e.g. random regression test-day model 
(Liu et al., 2004), cannot be optimally 
analysed with the single trait genomic model, a 
single trait deregression procedure using full 
animal pedigree was applied to derive DPRFs 
for genotyped bulls. Effective daughter 
contribution (EDC) was used as weighting 
factor for DPRF in the genomic evaluation. 
For the simulated data, no deregression or 
calculation of DYD was required, because 
there were no other effects generated in the 
simulation.  
 

All markers from the simulated data set 
were considered simultaneously in the 
genomic evaluation. Alternative genomic 
models differed in prior variance functions of 
the fitted markers. When all markers were 
assumed to have equal variance, denoted as 
linear model EQ, a linear regression of marker 
phenotypic deviation on genetic effect was 
expected (VanRaden, 2008). In contrast to the 
linear BLUP model EQ, variances of markers 
were assumed to be a function of marker effect 
estimates. Under such a genomic model, the 
regression of marker phenotype on genetic 
effect was non-linear (VanRaden, 2008). In 
general, the non-linear models regressed small 
marker effects more strongly towards zero than 
the linear BLUP genomic model EQ, and at the 
same time the non-linear models allowed 
bigger markers having bigger variances. In 
statistics, such models with weights or 
variances depending on effect estimates 
themselves were termed as robust regression 
model (Draper and Smith, 1998). Table 1 
describes the genomic models tested using the 
simulated data set from the 2008 QTL-MAS 

workshop. The two submodels with an 
exponential function, E1 and E2, resembled 
the US genomic evaluation model (VanRaden, 
2008).   

 
The fitted polygenic effect of the genomic 

models was analysed in the same way as in 
conventional genetic evaluation, i.e. using full 
pedigree and identical grouping of phantom 
parent groups. The identical modelling of the 
polygenic effect ensured that the polygenic 
estimated breeding values (EBV) were as close 
as possible to those from conventional 
evaluations.  
 
 
2.3. Estimating marker allele effects   
 
Mixed model equations of the genomic and 
polygenic models were solved with a special 
Gauss-Seidel algorithm (Lagarra and Misztal, 
2008), which was developed for statistical 
models containing a high number of effects. 
Application of the computing algorithm 
required that residuals must be updated 
periodically for avoiding accumulation of 
rounding errors. Prior marker effect estimates 
can be used for reducing computing time; for 
the non-linear models prior marker variances 
were also needed in addition to the prior 
marker effect estimates. Marker allele 
frequencies were estimated using the gene 
content method (Gengler et al., 2007) for the 
base population. A single phantom parent 
group was currently formed to estimate the 
base population allele frequency, though more 
groups could be considered. To obtain 
reliability of direct genomic breeding values 
(DGV), realised genomic relationship matrix 
was set up using the estimated base population 
allele frequencies and marker genotypes 
(VanRaden, 2008). Estimated DGV were then 
combined with conventional EBV for 
genotyped animals in routine genomic 
evaluation, weighted by their respective 
reliabilities, to obtain final genomic EBV 
(GEBV) and associated reliability with the 
standard selection index approach. For the 
simulated data, final GEBV was the sum of 
estimated DGV and polygenic EBV.  
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Table 1. Alternative genomic models with prior marker variance functions ( 2
jσ  is variance of marker 

j, 2σ  is average marker variance, and jŝ  is standardised estimate of marker j .)   
Variants of genomic model Marker variance function 
Linear BLUP model with equal variances (EQ) 122 ×=σσ j   
Non-linear models with variance functions:  
     Exponential function (E1) js

j
ˆ22 12.1×=σσ  

     Exponential function (E2)  js
j

ˆ22 25.1×=σσ  
     Linear function (LW)  

jj ŝ22 ×=σσ  

     Quadratic function (Q1) 222 ˆ jj s×=σσ  
     Quadratic function with effect limits (Q2) 222 ˆ jj s×=σσ  with lower/upper limits on jŝ  
Polygenic model without markers (PG) 022 ×≈σσ j  
 
 
3. Results and Discussion 
 
All computation was conducted on a Linux 
server using own Fortran 95 programs. 
Convergence criterion was defined as 
logarithm of  sum of squared difference in 
solutions between last and current rounds 
divided by sum of squared solutions from 
current round. Iteration process was considered 
to be converged, when the convergence 
criterion was less than –10. Usage of RAM 
was limited for the simulated data set 
containing 4665 genotyped and phenotyped 
animals. For the non-linear genomic models, 
100 rounds of ‘burn-in’ were executed using 
equal marker variance, followed by using 
variable marker variances that depended on 
marker effect estimates from previous round. 
Total clock time was between 25 to 120 
minutes, depending on the models. The 
simulated total heritability values was 0.3 and 
our REML estimate with a polygenic model 
was 0.304. For all the investigated genomic 
models, a very low polygenic heritability of 
0.001 (and a total marker heritability of 0.303) 
was used; whereas the polygenic model had a 
polygenic heritability of 0.303 (a total marker 
heritability of 0.001). Weighting factor for 
each phenotypic record was set to 1 in all the 
analyses.  

 
 
 
 

3.1. Marker effect estimates   
 
Figure 1  shows absolute marker effect 
estimates, expressed in standard deviation of 
average marker under the linear BLUP model 
EQ (left) and the non-linear genomic model 
LW (right). It can be seen that many small 
markers had non-zero estimates under the 
linear genomic model EQ. In contrast, the 
small marker estimates were practically 0 
under the non-linear genomic model LW with 
the linear marker variance function. Usually, a 
QTL was signalled by several closely linked 
markers with larger effects. All simulated 
QTLs, except those explaining less than 0.5% 
genetic variance, were identified by all the 
genomic models, including the linear genomic 
model EQ. However, the signals for QTLs 
were stronger for the non-linear genomic 
models than for the linear one. Although no 
QTLs were simulated on chromosome 6, non-
zero marker estimates were obtained, notably 
from the linear genomic model EQ. The two 
non-linear models Q1 and Q2, which assumed 
the strongest prior marker variances, identified 
fewest markers with non-zero effects and no 
false positives on chromosome 6; whereas the 
remaining genomic models found more small 
markers and also some markers with non-zero 
effect estimates on chromosome 6.  
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Figure 1. Marker effect estimates of the linear genomic model EQ with equal marker variances (left) 
and the non-linear genomic model LW with linear variance function (right).    
 
 
3.2. Estimated genomic breeding values   
 
Because a very low heritability was assumed 
for all the genomic models for the simulated 
data, polygenic EBVs from the genomic 
models were negligible, thus only estimated 
DGV were analysed further on. No biases were 
observed in the training data set for all the 
models. Table 2 gives correlation of estimated 
DGVs with simulated true genomic breeding 
values for all the genomic models and   the   
polygenic model. Overall, the correlation was 

between 0.86 and 0.90 for the training data set 
for all the genomic models, whereas lower 
correlation was found for the validation set, as 
expected. In comparison, the polygenic model 
resulted in lower correlation with the true 
genomic breeding values for the training data 
set, much lower for the validation set due to 
the fact that the polygenic model did not use 
genotypic information for predicting breeding 
values. In contrast to the difference in marker 
effect estimates, the six genomic models 
differed less in estimated DGVs. 

 
 
Table 2. Correlation of estimated genomic breeding values with true breeding values for the genomic 
and polygenic models. 
 
 No. 

animals 
Genomic models Polygenic 

model PG EQ E1 E2 LW Q1 Q2 
Generation 
number of 
training 
data set 

0 165 .88 .88 .87 .85 .86 .82 .76 
1 1500 .87 .87 .88 .87 .87 .83 .67 
2 1500 .90 .90 .92 .90 .91 .88 .75 
3 1500 .87 .88 .90 .89 .90 .87 .69 

All 4665 .88 .88 .90 .88 .89 .86 .70 
Generation 
number of  
validation  
data set 

4 400 .76 .76 .79 .80 .85 .79 .25 
5 400 .78 .79 .84 .86 .84 .83 .09 
6 400 .74 .74 .78 .83 .83 .81 .03 

All 1200 .76 .77 .81 .83 .84 .80 .15 
 
 

The polygenic model had a correlation of 
0.71 between its EBVs and estimated DGVs of 
the genomic model Q2 for the training set, and 
the correlation droped to 0.34 for the 

validation set. These correlations were slightly 
higher than the correlations between true and 
estimated breeding values of the polygenic 
model.  
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As predictive ability of the models 
concerned, it seems that all the genomic 
models gave much higher correlation between 
true and estimated DGVs than the polygenic 
model; the genomic models with stronger prior 
variances, e.g. Q1, Q2 and LW, tended to have 
higher correlated estimated DGVs with true 
values than the genomic models with weaker 
variances, e.g. EQ, E1 and E2. The ranking of 
the genomic models may be data dependent.  
 
 
3.3. Estimated genomic breeding values of 
individual animals    
 
In the training set there were 45 sires with 100 
and 450 dams with 10 genotyped progeny 
each.  Table 3  shows  correlations  between 
estimated DGVs and true breeding values or 
EBVs of the polygenic model PG for the sires 

and dams. All the correlations were quite high 
for the sires with 100 progeny and also for the 
dams with 10 progeny. EBVs of the polygenic 
model had the lowest correlation with true 
values than estimated DGVs from all the 
genomic models. The high correlation of the 
estimated DGVs with true breeding values for 
the sires or dams can be attributed to high 
frequencies of their marker haplotypes in the 
training set. Marker haplotypes of the sires or 
dams were, therefore, estimated reasonably 
accurately and so were their genomic breeding 
values as sum of the haplotypes. In contrast to 
the variable reliabilities or accuracy of 
estimated DGV between animals, estimates of 
all the markers should have equal reliability. 
But covariances or correlations between 
estimates of any pair of markers were 
dependent on the frequencies of the marker 
haplotypes in the training set. 

 
 
Table 3. Correlation of estimated genomic breeding values of sires with 100 and dams with 10 
genotyped progeny each in training set with true breeding values and EBVs of the polygenic model. 
 Genomic models EBV of 

model PG EQ E1 E2 LW Q1 Q2 
45 sires True BV .95 .95 .96 .94 .96 .93 .93 

EBV of model PG .96 .96 .96 .95 .94 .93  
450 dams True BV .90 .90 .91 .88 .88 .85 .81 

EBV of model PG .85 .85 .85 .80 .77 .76  
 
 
4. Application to real genotypic and 
phenotypic data of German Holsteins  
 
For the German national genome project, 
GenoTrack, (Thaller 2008), a total of 2830 
Holstein bulls, born in 1998 throughout 2002, 
were genotyped using Illumina chip Bovine 
SNP50 BeadChip. Additionally, about 600 
older bulls have being genotyped. By setting a 
minimum minor allele frequency of 0.01, 
45,488 SNP markers remained. Male animals 
were not expected to be heterozygous for 
markers located only on sex chromosome X.  
 

As phenotypic record, DPRF of bulls or YD 
of cows were chosen for the genomic 
evaluation based on a single trait genomic 
model, although DYD derived from multi-trait 
models (Liu et al., 2004) can describe 
phenotypic information from the conventional 
multi-trait models more accurately. DPRF 
were obtained with full animal pedigree using 

a software from Interbull Centre. A total of 44 
traits from seven trait groups were considered 
in genomic evaluation: milk production (3 
traits), somatic cell scores (1 trait), function 
longevity (1 trait), calving (4 traits), female 
fertility (6 traits), workability (4 traits) and 
conformation (25 traits). All bulls with at least 
10 EDC were included in the deregression 
procedure. As cows are going to be genotyped 
in near future, YD of the cows may be 
preferred to DPRF for cows, because of 
possibly extreme DPRF values caused by 
cows’ low reliability values. Estimated marker 
allele frequencies using gene content method 
(Gengler et al., 2007) were used to 
approximate genomic relationship matrix, 
which were then used to derive reliabilities of 
DGV estimates. Conventional EBVs from 
official evaluation were combined with the 
DGV estimates using their reliabilities as 
weights to calculate final GEBV. German total 
merit index RZG and other related indices 
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were derived on the basis of the combined 
GEBV. Waiting bulls of German Holstein 
breed, born from 2003 onwards, are going to 
be genotyped. A validation of the genomic 
evaluation system will be conducted using data 
of these younger bulls.  
 
 
5. Further developments 
 
Currently, genomic evaluations are based on a 
single trait model, which has no longer been 
the standard for conventional genetic 
evaluations. In order to make optimal use of 
phenotypic information from conventional, 
multi-trait model evaluations, an extension of 
the genomic models to multi-trait evaluations 
is needed. With GEBV of young animals 
available, breeders will conduct pre-selection 
using the GEBV information, which may cause 
problem for conventional evaluations unless all 
genotyping information is considered for 
genetic evaluations. Reliability approximation 
for estimated direct genomic breeding values 
needs to be improved to consider ever more 
genotyped animals and possible overestimation 
of the reliabilities. Until now, conventional and 
direct genomic proofs are estimated separately 
and then combined using selection index 
theory, which may double count phenotypic 
information. A joint analysis of polygenic and 
direct genomic breeding values is a more 
accurate way to obtain combined genomic 
breeding values. 
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