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Abstract 
 
The training data set consisting of 1 227 Polish Holstein Friesian bulls, born between 1987 and 2003, 
genotyped with the BovineSNP50 Genotyping BeadChip was used for the estimation of single 
nucleotide polymorphism (SNP) effects using two approaches - a conventional model in which SNPs 
are assumed as uncorrelated and a model where correlation between SNPs is expressed by pairwise 
linkage disequilibrium coefficients. Results show that the model without SNP correlation is superior 
for prediction of breeding values with the correlation between Direct Genomic Values and Estimated 
Breeding Values for milk yield for the training data set amounting to 0.98, while the model with SNP 
covariance only exhibiting the correlation of 0.59. On the other hand taking account for the covariance 
between SNPs allows for a much clearer differentiation between estimates of additive effects of 
particular SNPs and consequently for localising causal mutations.  
 
 
1. Introduction 
 
Recently many countries have incorporated the 
genomic information into their genetic 
evaluation systems (Hayes et al., 2009, Loberg 
and Dürr 2009). Although a great variety of 
statistical models, estimation methods, Single 
Nucleotide Polymorphism (SNP) selection 
criteria, and dependent variable definitions 
were applied and compared, none of the 
approaches takes into account that the SNPs 
are correlated through physical linkage or 
selection. In the current study we tackle this 
methodological gap and explore the potential 
benefits and problems of using a more realistic 
genomic evaluation model with SNP 
covariance. The analysis is performed by 
comparing a models where all SNPs are 
summed as independent (no covariance) with a 
model, in which covariances between SNPs are 
considered. 
 
 
2. Materials and Methods 

 
2.1. Material 
 
The data set, used for the estimation of 
additive effects of SNPs consists of 1 227 
Polish Holstein-Friesian bulls, born between 

1987 and 2003. Genotypes originate from the 
Illumina BovineSNP50 Genotyping BeadChip 
consisting of 54 001 SNPs of which 46 267 
passed the selection criteria of Minor Allele 
Frequency ≥ 0.01 and at least 90% call rate 
imposed on our data set. This data was 
described in detail by Szyda et al. (2009). In 
the current analysis deregressed Estimated 
Breeding Values (EBV) for milk yield 
corresponding to the national evaluation 
release from April 2009 are used for the 
illustration of methodology and results. 
 
 
2.2. Estimation and modelling of Linkage 

Disequilibrium 
 

The pairwise Linkage Disequilibrium (LD) is 
expressed as a squared correlation coefficient 
(r2) between allele counts observed at two 
SNPs and was calculated using the PLINK 
software (PLINK, Purcell et al., 2007). This 
approach is computationally feasible for large 
data sets since it does not require haplotype 
reconstruction, but it provides only an 
approximation of the true LD. In our analysis 
genotypic data from all bulls were used with 
the underlying, simplified assumption that the 
individuals are unrelated. 
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2.3. Estimation of Direct Genomic Values 
 

The following mixed model was used to 
estimate additive effects of the selected 
Nsnp=46 267 SNPs for Na=1 227 bulls with 
genotypes: 
 

y ൌ ܊܆ ൅ ܏܈ ൅  , ܍
 
where y [Na] represents a vector of deregressed 
EBVs, X is a [NaxNb] design matrix for fixed 
effects, b [Nb] is a vector of Nb fixed effects, 
which in the current model comprise only a 
general mean (Nb=1), Z is a [NaxNsnp] design 
matrix for SNP genotypes, which is 
parameterized as -1, 0, or 1 for a homozygous, 
a heterozygous, and an alternative homozygous 
SNP genotype respectively, g is a [Nsnp] vector 
of random additive SNP effects, and e is a [Na] 
vector of residuals with ܍~Nሺ0, ۲σෝୣ

ଶሻ with D 
being a diagonal matrix containing the 
reciprocal of Effective Daughter Contributions 
on the diagonal. Two approaches towards 
modelling the covariance structure of g were 
considered: (i) without covariance - assuming 

N~܏ ൬0, ۷ ஢ෝ౗
మ

N౩౤౦
൰, with I being an identity matrix 

and σෝୟ
ଶ representing the additive genetic 

variance of milk yield and (ii) including 
covariance information - assuming 

N~܏ ൬0, ۵௅஽
஢ෝ౗

మ

N౩౤౦
൰ with the off-diagonal 

elements of ۵ consisting of pairwise LD 
coefficients between linked SNPs including 
only coefficients r2≥0.80 (smaller values were 
truncated to 0.00), the upper value of r2 was 
truncated to 0.95. The corresponding mixed 
model equations (Henderson, 1984) have the 
following form: 
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with R represented by ۲ߪො௘

ଶ  and G either by 
۷ ఙෝೌ

మ

ேೞ೙೛
  or by ۵௅஽

ఙෝೌ
మ

ேೞ೙೛
  , depending on the SNP 

covariance model considered. The estimation 
of model parameters was based on the iteration 
on data technique through the Gauss-Seidel 
algorithm with residuals update (Legarra and 
Misztal 2008). Note, that for the model with 
SNP covariance the estimates of SNP effects 
from the no covariance models were used as 
starting values and only one iteration round 
was performed to obtained new estimates. 
 

DGV is defined as the sum of additive 
effects of SNPs estimated from the above 
models: ۲۵܄෣ ൌ  . ො܏܈

 
 

3. Results and Discussion 
 

3.1. Linkage Disequilibrium structure 
 

The average genomewise r2 among pairs of 
linked (i.e. located on the same chromosome) 
SNPs amounts to 0.098. As illustrated by 
Figure 1, the decay of LD with increasing 
intermarker distance is observed, still there are 
pairs of SNPs which exhibit high LD even if 
they are relatively apart one from another. The 
extend and rate of decay of LD observed in our 
data is very similar to those recently reported 
for Holstein-Friesian by The Bovine Hap Map 
Consortium (2009), showing that starting from 
an intermarker distance of covering up to 300 
Kbp, pairwise LD remains at an approximately 
constant level of 0.10. 
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Fig. 3 Estimates of additive SNP effects on milk yield, Fig. 4 Estimates of additive SNP effects on milk yield 
 based on the model without SNP covariance  around the BTA14 region harbouring DGAT1.  
 (blue dots) and the model with SNP covariance  Model without SNP covariance (blue dots). 
 (red dots).       Model with SNP covariance (red dots). 
 
 
3.3. Correlation of DGV with EBV 

 
The correlation between EBV and DGV 
among bulls from the training data set 
estimated using a no covariance model is very 
high and amounts to 0.98. However, when 
DGV is calculated based on the model with 
SNP covariance, the correlation drops down to 
0.59, showing that for prediction of 
genomewide breeding value such a model is 
the inferior one. 
 
 
4. Conclusions 

 
Comparison of the performance of both 
applied approaches towards statistical 
modelling of multiple SNP effects shows that 
incorporating covariances between SNPs into 
the model provides better resolution for 
candidate gene selection and is thus a useful 
tool for identification of causal mutations and 
further on for designing a small SNP chip, 
which could be used in a large scale dairy 
cattle genotyping. On the other hand, 
neglecting covariance between SNPs and thus 
allowing for more variability of the particular 
estimates results in a much better prediction of 
the total additive genetic merit of an individual 
ant thus is a recommended approach for GBV 
calculation based on the currently widespread 
BovineSNP50 Genotyping BeadChip. 
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