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Abstract

The training data set consisting of 1 227 Polish Holstein Friesian bulls, born between 1987 and 2003,
genotyped with the BovineSNP50 Genotyping BeadChip was used for the estimation of single
nucleotide polymorphism (SNP) effects using two approaches - a conventional model in which SNPs
are assumed as uncorrelated and a model where correlation between SNPs is expressed by pairwise
linkage disequilibrium coefficients. Results show that the model without SNP correlation is superior
for prediction of breeding values with the correlation between Direct Genomic Values and Estimated
Breeding Values for milk yield for the training data set amounting to 0.98, while the model with SNP
covariance only exhibiting the correlation of 0.59. On the other hand taking account for the covariance
between SNPs allows for a much clearer differentiation between estimates of additive effects of
particular SNPs and consequently for localising causal mutations.

1. Introduction

Recently many countries have incorporated the
genomic information into their genetic
evaluation systems (Hayes ef al., 2009, Loberg
and Diirr 2009). Although a great variety of
statistical models, estimation methods, Single
Nucleotide Polymorphism (SNP) selection
criteria, and dependent variable definitions
were applied and compared, none of the
approaches takes into account that the SNPs
are correlated through physical linkage or
selection. In the current study we tackle this
methodological gap and explore the potential
benefits and problems of using a more realistic
genomic  evaluation model with SNP
covariance. The analysis is performed by
comparing a models where all SNPs are
summed as independent (no covariance) with a
model, in which covariances between SNPs are
considered.

2. Materials and Methods
2.1. Material
The data set, used for the estimation of

additive effects of SNPs consists of 1227
Polish Holstein-Friesian bulls, born between
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1987 and 2003. Genotypes originate from the
[llumina BovineSNP50 Genotyping BeadChip
consisting of 54 001 SNPs of which 46 267
passed the selection criteria of Minor Allele
Frequency > 0.01 and at least 90% call rate
imposed on our data set. This data was
described in detail by Szyda et al. (2009). In
the current analysis deregressed Estimated
Breeding Values (EBV) for milk yield
corresponding to the national evaluation
release from April 2009 are used for the
illustration of methodology and results.

2.2. Estimation and modelling of Linkage
Disequilibrium

The pairwise Linkage Disequilibrium (LD) is
expressed as a squared correlation coefficient
() between allele counts observed at two
SNPs and was calculated using the PLINK
software (PLINK, Purcell er al, 2007). This
approach is computationally feasible for large
data sets since it does not require haplotype
reconstruction, but it provides only an
approximation of the true LD. In our analysis
genotypic data from all bulls were used with
the underlying, simplified assumption that the
individuals are unrelated.



2.3. Estimation of Direct Genomic Values

The following mixed model was used to
estimate additive effects of the selected
Nonpy=46 267 SNPs for N,=1227 bulls with
genotypes:

y=Xb+1Zg+e,

where Yy [N,] represents a vector of deregressed
EBVs, X is a [N,xNy] design matrix for fixed
effects, b [Np] is a vector of Ny fixed effects,
which in the current model comprise only a
general mean (N,=1), Z is a [N,xNg,,] design
matrix for SNP genotypes, which is
parameterized as -1, 0, or 1 for a homozygous,
a heterozygous, and an alternative homozygous
SNP genotype respectively, g is a [Ng,,] vector
of random additive SNP effects, and € is a [N,]
vector of residuals with e~N(0,DG2) with D
being a diagonal matrix containing the
reciprocal of Effective Daughter Contributions
on the diagonal. Two approaches towards
modelling the covariance structure of g were
considered: (i) without covariance - assuming
g~N (0, I Non
and G2 representing the additive genetic
variance of milk yield and (ii) including
covariance information - assuming
g~N (O, G.p %ﬁp) with the off-diagonal
elements of G consisting of pairwise LD
coefficients between linked SNPs including
only coefficients 1°>0.80 (smaller values were
truncated to 0.00), the upper value of r* was
truncated to 0.95. The corresponding mixed
model equations (Henderson, 1984) have the
following form:

e

), with | being an identity matrix
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with R represented by D82 and G either by
I % or by G;p & , depending on the SNP
Nsnp Nsnp

covariance model considered. The estimation
of model parameters was based on the iteration
on data technique through the Gauss-Seidel
algorithm with residuals update (Legarra and
Misztal 2008). Note, that for the model with
SNP covariance the estimates of SNP effects
from the no covariance models were used as
starting values and only one iteration round
was performed to obtained new estimates.

DGV is defined as the sum of additive
effects of SNPs estimated from the above
models: DGV = Zg .

3. Results and Discussion
3.1. Linkage Disequilibrium structure

The average genomewise r* among pairs of
linked (i.e. located on the same chromosome)
SNPs amounts to 0.098. As illustrated by
Figure 1, the decay of LD with increasing
intermarker distance is observed, still there are
pairs of SNPs which exhibit high LD even if
they are relatively apart one from another. The
extend and rate of decay of LD observed in our
data is very similar to those recently reported
for Holstein-Friesian by The Bovine Hap Map
Consortium (2009), showing that starting from
an intermarker distance of covering up to 300
Kbp, pairwise LD remains at an approximately
constant level of 0.10.
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Fig. 1 Distribution of linkage disequilibrium measure
(r*) along the bovine genome. Black dots represent
average r° for a given intermarker distance, red line
is the cubic polynomial fitted to the averaged data.

Fig. 2 Average r* (blue) and its standard
deviation (navy blue) calculated
separately for each chromosome.

While considering chromosomes
separately some variation in average r* and its
variability is observed, that, surprisingly, does
not seem to be a clear function of
a chromosome length (Figure 2). An
interesting observation is that the highest
average r° and the highest r’ variability is
attributed to BTA14 - the chromosome known
to harbour DGAT1 - a gene of a very
pronounced effect on production traits (Grisart
et al, 2002).

3.2. SNP effect estimates

The estimates of additive effects of all SNPs
originating from both models are presented on
Figure 3. Although the resolution of the graph
does not allow for inferences on particular
markers, it is evident that estimates from the
model, which incorporates covariances
between SNPs are more variable in a sense that
there are more extreme (high and low)
estimates, as compared to the values
originating from the no covariance model. This
feature of the covariance model is highly
appreciated from the point of view of
candidate gene mapping, since - as it is clearly
seen on the graph, it prevents the true
underlying genetic effect of an unknown gene
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from being equally distributed between SNPs
of high LD.

Shortcomings and advantages of the LD
based approach are visualised on Figure 4
using an example of the region of BTA14 in
the neighbourhood of DGATI. When LD
between SNPs is very high there is not enough
information for neither of the models to
differentiate between their effects, but if no
covariance is assumed in the model the genetic
effect is distributed among multiple SNPs even
if they are not in strong LD. Interestingly, the
highest estimates of SNP effects based on our
data set are not attributed directly to the
DGATI1 region, but to SNPs located within
other coding sequences such as: CYHRI1 and
NFKBIL2 (SNPs - ARS-BFGL-NGS-34135
and ARS-BFGL-NGS-94706 covering the
region between 260342 and 281534 bp of
BTA14); LOC506831, LOCS524974, and
MAPKI15 (HAPMAP25384-BTC-001997 and

HAPMAP24715-BTC-001973 covering
835055-856890 bp); as well as PTK2
(HAPMAP32970-BTC-064990 and
HAPMAP24986-BTC-065021 covering

2313 594-3 018 725 bp). Clearly, a larger data
set with more recombinations is needed to
break the high LD estimated between some
marker pairs to enable Dbetter gene
identification resolution.
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Fig. 3 Estimates of additive SNP effects on milk yield, Fig. 4 Estimates of additive SNP effects on milk yield

based on the model without SNP covariance
(blue dots) and the model with SNP covariance
(red dots).

3.3. Correlation of DGV with EBV

The correlation between EBV and DGV
among bulls from the training data set
estimated using a no covariance model is very
high and amounts to 0.98. However, when
DGV is calculated based on the model with
SNP covariance, the correlation drops down to
0.59, showing that for prediction of
genomewide breeding value such a model is
the inferior one.

4. Conclusions

Comparison of the performance of both
applied approaches towards  statistical
modelling of multiple SNP effects shows that
incorporating covariances between SNPs into
the model provides better resolution for
candidate gene selection and is thus a useful
tool for identification of causal mutations and
further on for designing a small SNP chip,
which could be used in a large scale dairy
cattle genotyping. On the other hand,
neglecting covariance between SNPs and thus
allowing for more variability of the particular
estimates results in a much better prediction of
the total additive genetic merit of an individual
ant thus is a recommended approach for GBV
calculation based on the currently widespread
BovineSNP50 Genotyping BeadChip.

around the BTA 14 region harbouring DGAT].
Model without SNP covariance (blue dots).
Model with SNP covariance (red dots).
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