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1. Introduction 
 
Multiple-trait across country evaluation 
(MACE) is used for international genetic 
evaluation of dairy bulls. MACE treats records 
in different countries as different traits. Thus, a 
sire will get a breeding value for each 
participating country. Whenever a country 
makes changes to their national evaluation 
model, the genetic variance-covariance (VCV) 
matrix needs to be re-estimated. 
 
 Estimation of the VCV matrix is a difficult 
task. For the Holstein production evaluation, 
which includes 26 traits, it is not possible to 
estimate the VCV matrix in a single analysis 
with the currently available estimation 
methods and the given time constraints. Hence, 
the complete matrix is built from analyses of 
sub-sets. This readily results in a non-positive 
definite matrix and a bending procedure 
(Jorjani et al., 2003) needs to be applied to 
obtain a positive definite matrix. In addition, 
the VCV matrix is usually over-parameterized 
as genetic correlations between countries are 
generally high. 
 
 Mäntysaari (2004) showed that the classical 
MACE model can be described as a random 
regression (RR) MACE model. This provides 
the opportunity to model the complete VCV 
parsimoniously by fitting only the principal 
components (PC) with non-negligible variance, 
which yields a VCV matrix of reduced rank. In 
turn, this can reduce the dimension of the 
system of equations to be solved in MACE, 
and thus the computational effort required 
(Tyrisevä et al., 2008).  
 
 The aim of this study is to compare two 
approaches available for reduced rank 
estimation of the VCV matrix: the direct PC 

method proposed by Kirkpatrick and Meyer 
(2004) and the bottom-up PC procedure 
suggested by Mäntysaari (2004). 
  
 
2. Material and Methods 
 
2.1 Random regression MACE and rank 
reduction 
 
As has been shown (Mäntysaari 2004), 
classical MACE and random regression 
MACE are equivalent models. The genetic 
VCV matrix of sire effects, var(ui) = G, can be 
decomposed as:  
 

SCSG =  and TVDVC = ,  
 
where S is a diagonal matrix of standard 
deviations, C is the genetic correlation matrix,  
V is a matrix of eigenfunctions and D the 
diagonal matrix of eigenvalues of C. Then the 
classical MACE model for t countries 
 

iiiii εuZbXy ++=    [1] 
 
equals the RR MACE model 
 

iiiii εSVνZbXy ++=  [2] 
 
For both models yi is a n×1 vector of 

national de-regressed breeding values for bull 
i, b is a t×1 vector of country effects and εi is a 
vector of residuals with var(εi) = I. Xi and Zi 
are the incidence matrices. In [2], νi is a vector 
of t regression coefficients for bull i 
with Dν =)var( i .  

 
If G is close to singular, only r eigenvalues 

(r < t) can be considered, and G can be 
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replaced with SVDSVG T
1111 = . D1 contains 

the r significant eigenvalues and V1 the r 
corresponding eigenfunctions. See Tyrisevä et 
al. (2008) for further details. 
 
 
2.2 Bottom-up PC approach 
 
The bottom-up PC approach adds traits 
(=countries) sequentially into the analysis until 
all traits are included (Mäntysaari 2004). 
Whenever a new trait has been added to the 
analyses, Akaike’s information criterion (AIC) 
is used to decide whether a model with lower 
rank is more likely. The stages of the algorithm 
are as following: 
 
1. start REML analyses with n countries (7 

countries in this study) 
2. repeatedly omit one PC and run REML 

until AIC starts to deteriorate 
3. select the best model to go forward 

(matrices of eigenvalues and eigenfunctions 
in step 2 are saved and those for the best 
model are used)  

4. add a new country and run REML  
5. reduce by one PC and run REML (only one 

reduction needs to be tested after step 1 
since the other fits have already been tested 
in the earlier steps of the algorithm)  

6. compare models in steps 4 and 5 and select 
the model with the best AIC to go forward  

7. repeat steps 4-6 until all countries have 
been added and the best final model has 
been selected  

8. update weights  
 
 
2.3 Direct PC approach 
 
In direct PC approach the genetic VCV matrix 
is decomposed into the matrices of eigenvalues 
and eigenfunctions, and only the leading PCs 
are fitted to model the genetic VCV matrix 
(Kirkpatrick and Meyer 2004). Therefore, 
compared to the bottom-up PC approach, the 
direct PC approach differs in the matrix used 
for the eigenvalue decomposition.  
 
 
2.4 Correct rank of matrix 
 
The bottom-up approach is designed to 
estimate the appropriate rank of the VCV 

matrix. The appropriate rank can be inferred 
by a series of model comparisons for analysis 
with different ranks. The direct PC approach 
requires, in turn, the number of PCs to be fitted 
(i.e., rank) to be specified a priori.  

 
Based on the results of Meyer and 

Kirkpatrick (2008), selecting too low a rank 
can lead to picking up the wrong subset of 
principal components in the direct PC 
approach. Further, removing more than 0.5% 
of the sum of the eigenvalues in VCV matrix 
affected genetic correlations as found in the 
current study (results not shown). Thus, it is 
important to find the appropriate rank when 
rank reduction is desired in RR MACE. 
 

The ability of the bottom-up PC approach 
to find the correct rank was validated by 
determining the appropriate rank using 
methods suggested by Meyer and Kirkpatrick 
(2008). For this, the VCV matrix for protein 
yield estimated by Interbull in the routine 
evaluation was decomposed, and the 
magnitude of the eigenvalues was studied to 
make a reasonable guess of the appropriate 
rank. After this, several direct PC analyses for 
ranks bracketing this value were carried out, 
and the resulting Maximum Log Likelihood 
values, AIC, sum of the eigenvalues and 
magnitude of the leading eigenvalues were 
studied in order to establish the correct rank.  

 
 

2.5 Test application 
 
Data sets used for testing were August 2007 
and April 2009 MACE Interbull Holstein 
evaluations for protein yield and SCC, 
respectively. In total, 25 countries/traits for 
protein yield and 23 countries/traits for SCC 
were included. 
 
 Bottom-up PC runs were performed for 
both protein yield and SCC. For protein yield, 
direct PC approach runs with ranks 15, 17, 19 
and 20 were performed. For SCC, the direct 
PC analysis was only carried out for rank 15, 
the final rank of bottom-up approach. 
 

 The current algorithm for the bottom-up 
PC is driven by shell scripts tailored for the 
variance component estimation software 
WOMBAT (Meyer 2007b). The analyses for 
direct PC approach were also carried out with 
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WOMBAT. An average information REML 
algorithm was used for both direct and bottom-
up PC analyses. 

 
 

3. Results 
 
3.1 Bottom-up PC approach 
 
The estimated rank from the bottom-up PC 
approach for the VCV matrix for protein yield 
was 20. Comparison of Maximum Log 
Likelihood and AIC values as proposed by 
Meyer (2007a), as well as comparison of the 
leading principal components (Table 2) 
suggested that rank 20 was a good choice, 
although the differences between ranks 19 and 
20 were small.  
 
 
3.2 Comparison of genetic correlations 
 
In general, genetic correlations obtained using 
different approaches were rather similar, 
especially for SCC. Selected estimates of 
genetic correlations for protein yield and SCC 
are plotted in Figures 1 and 2, respectively. 
Non-post-processed Interbull estimates 
(Interbull) were used for comparison.  
 

On average, correlation estimates from the 
bottom-up approach were somewhat lower 
than those estimated by the direct PC approach 
with equal rank. However, the differences in 
the minimum, maximum and mean values 
were small between the approaches (Table 1).  
 

The level of the genetic correlations for 
SCC was high throughout; the minimum value 
being no lower than 0.61 (an Interbull 
estimate). Surprisingly, lower genetic 
correlation estimates were obtained for protein 
yield. Estimates for some between-country 
correlations were as low as 0.10. This was in 
contrast to our hypothesis of high genetic 
correlations between the countries for protein 
yield. For both traits, lowest correlation 
estimates were from Interbull estimates. 

 
 
 
 
 
 
 

Table 1. Minimum, maximum and mean 
values of estimated genetic correlations for 
protein 2007 and SCC 2009. 
Trait and approach Min Max Mean
Protein 2007
Direct PC 20 0.08 0.94 0.69
Bottom-up PC 20 0.04 0.94 0.68
Interbull 0.02 0.94 0.70

SCC 2009
Direct PC 15 0.73 0.97 0.89
Bottom-up PC 15 0.65 0.98 0.88
Interbull 0.61 0.98 0.89  
 
 
4. Discussion 
 
For both traits the estimated rank was smaller 
than the size of the VCV matrix. This reduced 
the number of genetic parameters to be 
estimated from 325 to 311 for protein yield 
and from 276 to 211 for SCC. Use of correct 
rank for protein yield also resulted in the 
fastest running time for direct PC. Analysis of 
direct PC 15 required  20 days, whereas that 
for direct PC 20 needed only 5.5 days.  
 

All approaches seemed to perform well for 
analyses of SCC, even though the number of 
common bulls was low or zero in some cases 
(Figure 2). One has to bear in mind that there 
are, however, still links through the pedigree in 
these cases. 
 

Compared to SCC, approaches used for 
protein yield behaved differently in the 
problems associated with the data structure. 
Low numbers of common bulls and some 
challenging countries/populations were at least 
to some extent associated with the lower 
correlation estimates. Further, they were 
clearly associated with the larger differences 
between results from the two methods. The 
bottom-up PC approach had a tendency to lead 
to the lowest estimates in these cases. 
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5. Conclusions 
 
In practice, direct and bottom-up PC 
approaches performed equally well and 
enabled the use of more parsimonious models 
through random regression MACE. Bottom-up 
PC can be utilized for direct estimation of the 
rank of the VCV matrix to be used.  
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Table 2. Comparison of Log Likelihood, AIC and eigenvalues from reduced rank variance component 
analysis with different rank for the protein yield. 

Approach 
No of 
para-

meters 

Deviation 
of the 

highest 
Max LogL 

Deviation 
of the 

highest 
 -½AIC 

Sum of 
eigen-
values

Eigenvalues 

1 2 3 4 5 6 7 8 

Direct PC15 271 -105 -68 1695.5 1325.7 78.9 69.8 43.6 36.6 30.9 22.3 19.7 
Direct PC17 290 -36 -18 1695.4 1329.7 76.7 65.0 44.5 35.2 30.4 21.3 17.8 
Direct PC19 305 -2 0 1694.6 1330.9 76.1 60.3 47.4 33.2 28.8 21.4 17.2 
Direct PC20 311 0 -3 1694.6 1331.0 76.1 60.1 47.2 33.0 28.6 21.3 17.3 
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 Figure 1. Examples of genetic correlations for protein 2007 using both bottom-up and direct PC 
approaches together with the non-post-processed Interbull correlations for comparison.  
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 Figure 2. Examples of genetic correlations for SCC 2009 using both bottom-up and direct PC 
approaches together with the non-post-processed Interbull correlations for comparison. 
 
 


