
37 
 

Estimation of Variance Components for Nordic Red Cattle Test-
Day Model: Bayesian Gibbs Sampler vs. Monte Carlo EM REML 

 
M.H. Lidauer1, P. Madsen2, K. Matilainen1, E.A. Mäntysaari1, I. Strandén1, R. Thompson3,  

J. Pösö4, J. Pedersen5, U.S. Nielsen5, J.-Å. Eriksson6, K. Johansson6, G.P. Aamand7 
1MTT Agrifood Research Finland, Biotechnology and Food Research, Biometrical Genetics, Jokioinen, Finland; 

2Danish Institute of Agricultural Sciences, Genetics and Biotechnology, Foulum, Denmark;  3Rothamsted 
Research, Biomathematics and Bioinformatics, Harpenden, United Kingdom; 4Faba Breeding, Vantaa, Finland; 
5The Danish Agricultural Advisory, Aarhus, Denmark; 6Swedish Dairy Association, Stockholm, Sweden;  7NAV 

Nordic Cattle Genetic Evaluation, Aarhus, Denmark 
 
 
 

1. Introduction 
 
Genetic evaluation of yield traits for the dairy 
breeds in Denmark, Finland and Sweden is 
based on a multi-breed multi-lactation random 
regression (RR) test-day (TD) model, which 
allows different heritabilities for each breed. 
Currently used variance components (VC) 
were estimated in 1998 and 2001 and therefore 
a re-estimation of the VC was  desirable. The 
VC analyses were conducted by Bayesian 
methods (Madsen et al., 2008). Post Gibbs 
analyses showed poor mixing properties for 
several VC, which left us uncertain about the 
quality of the parameters estimated. 
 

Bayesian analysis is favoured in many RR 
VC studies (Jamrozik et al., 2001) as it allows 
a simultaneous estimation of all parameters. 
For RR models, benefits of exact REML 
methods are stalled by the need of the inverse 
of a large coefficient matrix. Consequently, 
VC for large RR models are acquired by 
summing estimates from analyses of many 
subsets (Thompson et al., 2005). García-Cortés 
et al. (1992) showed that inversion of the 
coefficient matrix can be circumvented by 
Monte Carlo (MC) re-sampling for prediction 
error variances. In an ongoing Ph.D. study, 
ideas of García-Cortés et al. (1992) are 
developed for a multivariate EM REML 
implementation (Matilainen et al., 2009). 

 
Aim of this study was to compare Bayesian 

RR VC estimates for Finnish Ayrshire (FAY), 
Swedish Red Breed (SRB) and Danish Red 
Cattle (RDM), with estimates obtained by the 
multivariate EM REML algorithm. 

 
 

 

2. Estimation of parameters 
 
2.1 Data and model 
 
TD observations on milk, protein and fat yield 
from the first three lactations were selected 
from 19709, 19928 and 19857 cows of the 
three main breeds FAY, SRB and RDM, 
respectively, calving from 1995 to 2006. The 
three data samples comprised of 374009, 
353340 and 320881 TD records. For FAY, 
protein and fat were only available on every 
second TD. The amounts of data were found 
large enough to infer about differences in 
heritabilities across breeds (Madsen et al., 
2008). The chosen multiple-trait RR animal 
model was:  
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Fixed effects were herd×2-years-calving-

period (H), calving age (A), days carried calf 
(D) and regressions on days in milk (DIM) (d) 
within 2-years calving period (M). Random 
effects were herd test-day (h), RR for herd×2-
years calving period (c), additive genetic (a), 
and non-genetic (p) effects. The random error 
(e) was block diagonal, with blocks 
corresponding to lactation, and nested within 
12 DIM classes (s), from d=8 to d=365 with 
different intervals: 3× 2 weeks, 3× 3 weeks, 3× 
7 weeks, and 3× 5 weeks. Lactation curves 
were fitted by Legendre polynomials of d plus 
a  Wilmink term  W=exp(-0.04d)  giving L0, L1,  
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L2, L3 and W nested within M; L1, L2, and W 
nested within c; L0, L1, L2, and W nested within 
a and p. Size of (co)variance matrix was 9×9, 
27×27, 36×36 and 36×36 for h, c, a, and p, 
respectively. In total, 1971 VC parameters 
were estimated for each breed. 
 
 
2.2 Bayesian analysis via Gibbs sampler 
 
Bayesian analysis was conducted by a Gibbs 
sampler implemented in the DMU-package 
(Madsen & Jensen, 2008). Flat priors were 
assumed for fixed effects and Wishart 
distributions for all random effects. Prior 
values for VC were obtained from analysis of 
samples of TD records from ~1000 cows. The 
degree of belief was set to dimension of the 
covariance matrix + 2 to make priors proper. A 
post Gibbs analysis was conducted to 
determine burn-in period and calculate for 
each parameter the effective sample size 
(ESS). Initial sequence estimators for ESS 
were calculated as given by Geyer (1992).  
 
 
2.3. Monte Carlo EM REML analysis 
 
The Monte Carlo expectation maximisation 
(MC-EM) REML algorithm, presented by 
(García-Cortés et al., 1992), was developed 
further. The implementation allows 
multivariate analysis with missing 
observations. Solving the random effects was 
based on the MiX99 package (Vuori et al., 
2006). In each REML round, the algorithm 
requires calculation of sums of squares from 
BLUP solutions of the real data and of 
sampled data. Two sampled data sets in each 
REML round were found sufficient for these 
analyses. The convergence was examined 
using the relative change in round to round 
linear regression predictors of the VC 
estimates. A detailed description of the MC-
EM REML implementation will be given by 
Matilainen et al. (2009) at the forthcoming 
EAAP meeting in Barcelona.  
 
 
3. Results 
 
Available chains from the Bayesian analyses 
were of length 269720, 246840 and 189800 for 
FAY, SRB and RDM, respectively. First    
70000 samples were discarded as burn-in and 

every 20th sample from the remaining chain 
was used. This yielded 9984, 8840 and 5990 
samples, respectively, which were used for the 
calculation of ESS and posterior means. ESS 
were high for herd test-day, herd-curve and 
residual effect VC, sufficiently high for non-
genetic animal effect VC, but low for the 
additive genetic animal effect VC (Table 1). 

 
Table 1. Average effective sample size for the 
estimated VC by random effect and breed.  
(Co)Variances 
Estimates for 
Random Effect 

 
Finnish 

Ayrshire 

Swedish 
Red 

Breed 

Red 
Danish 
Cattle 

Herd test-day 6855.8 6460.7 3164.6 
Herd curve 2659.5 2942.8 2345.6 
Non-genetic 
animal 

290.3 164.9 225.7 

Additive 
genetic 

57.2 42.8 42.6 

Residual 7231.5 7117.5 4752.7 
   

For each of the MC-EM REML analyses 
3000 REML rounds were performed. Study of 
convergence suggested a value ≤ 1.0×10-8 for 
the applied criteria to ensure sufficient 
convergence. This value was reached fastest by 
the herd test-day VC estimates and slowest by 
the non-genetic and additive genetic animal 
VC estimates (Table 2).  

 
Table 2. Number of REML rounds to reach 
convergence given by random effect and 
breed.  
(Co)Variances 
Estimates for 
Random Effect 

 
Finnish 

Ayrshire 

Swedish 
Red 

Breed 

Red 
Danish 
Cattle 

Herd test-day 164 131 159 
Herd curve 466 566 451 
Non-genetic 
animal 

2075 2535 >3000* 

Additive 
genetic 

1576 1954 2397 

Residual 1652 609 462 
* converged to 1.7×10-8 
 
 
3.1 Differences in VC estimates 
 
Overall, estimated VC from the both methods 
were in good agreement when estimates had 
high ESS in the Bayesian analysis. Significant 
differences were found for genetic animal 
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effect covariances, which included a Wilmink 
term (Figure 1, Table 3). For FAY milk yield, 
some estimates for non-genetic animal and 
additive genetic animal effects were different 
between the both methods although the ESS 
was high. The variance estimate for L0 of 1st 

lactation milk yield was 1.887 and 1.990 from 
Bayesian and the MC-EM REML analysis, 
respectively. The difference was not explained 
by differences in mean and mode of the 
posterior distribution (posterior mode was 
1.902). 

 

 
Figure 1. Plot of samples (Bayesian analysis) and convergence (MC-EM REML analysis) for three 
genetic covariance parameter estimates for Swedish Red Breed. 
 
Table 3.  Effective sample size (ESS), posterior mean from Gibbs sampler (GS) and REML estimate 
for genetic covariances between intercept of first lactation milk and second lactation parameters by 
breed. 

 Finnish Ayrshire  Swedish Red Breed  Danish Red Cattle 
  

 ESS 
Milk 1, L0   

 ESS 
Milk 1, L0   

 ESS 
Milk 1, L0 

 GS REML  GS REML  GS REML 
Milk 2 L0 124.5 1.799 1.758 200.0 2.119 2.016 22.4 1.810 1.765 

L1 162.9 0.067 0.027 154.4 0.318 0.233 45.0 0.186 0.145 
L2 54.1 -0.204 -0.232 93.5 -0.271 -0.243 20.2 -0.146 -0.010 
W 22.7 -0.562 -0.574 24.1 -0.478 -0.684 20.4 -0.519 -1.302 

Protein 2 L0 125.9 1.000 0.955 198.5 1.289 1.240 21.9 1.104 1.080 
L1 179.6 0.267 0.235 144.9 0.457 0.376 63.7 0.351 0.308 
L2 63.6 -0.138 -0.129 96.4 -0.155 -0.147 19.5 -0.075 0.029 
W 21.7 0.457 0.355 26.8 0.461 0.248 20.4 0.332 -0.307 

Fat 2 L0 142.8 0.669 0.638 163.6 0.913 0.871 36.5 0.682 0.682 
L1 139.3 0.179 0.186 123.9 0.322 0.282 54.2 0.261 0.213 
L2 78.6 -0.069 -0.061 61.3 -0.079 -0.088 39.0 -0.030 0.057 
W 23.1 0.171 0.175 16.4 0.024 0.013 53.3 0.028 -0.553 

 
 
3.2  Correlations 
 
Genetic correlations between different DIM 
within and across traits were the same or 
somewhat lower when VC were estimated with 
MC-EM REML (Figure 2). However, derived 
305d genetic correlations between traits 
differed not more than ±1 percent point 
between the estimation methods. Phenotypic 
correlations between different DIM within and 
across traits were practically the same from 
both VC estimation methods and all breeds. 
 

3.3 Heritabilities 
 
Daily heritabilities obtained from the both 
methods were in good agreement for RDM and 
SRB (Figure 3). For FAY, heritabilities were 
in good agreement for protein and fat yield 
traits, but showed some differences for milk 
yield traits. Daily heritabilities for these traits 
were on average 10% lower when VC were 
estimated by the Gibbs sampler. These 
differences are also seen in heritabilities given 
on a 305-d base (Table 3). 
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Figure 2. Genetic (above) and phenotypic (below) correlations between DIM 60 of 1st lactation 
protein yield and all other DIMs and traits given for Swedish Red Breed by VC estimation method. 
 
 

 
Figure 3. Daily heritabilities for Swedish Red Breed by VC estimation method. 
 
 
Table 3. Heritabilities given on 305-d base, 
derived from VC estimated by Gibbs sampling 
(GS) or MC-EM REML (REML) for milk (M), 
protein (P), and fat yield (F) of 1st (1), 2nd (2), 
and 3rd (3) lactation by breed; Finnish Ayrshire 
(FAY), Swedish Red Breed (SRB), and Danish 
Red Cattle (RDM). 

 FAY SRB RDM 
 GS REML GS REML GS REML 

M1 0.35 0.38 0.44 0.44 0.42 0.42 
P1 0.32 0.33 0.43 0.43 0.39 0.38 
F1 0.34 0.35 0.43 0.43 0.40 0.39 
M2 0.31 0.33 0.33 0.33 0.36 0.35 
P2 0.32 0.32 0.36 0.34 0.36 0.35 
F2 0.33 0.34 0.36 0.34 0.35 0.35 
M3 0.29 0.31 0.32 0.34 0.36 0.34 
P3 0.29 0.31 0.35 0.35 0.37 0.35 
F3 0.33 0.33 0.36 0.36 0.37 0.35 

4. Discussion 
 
Madsen et al. (2008) observed poor mixing in 
daily heritability estimates in a post Gibbs 
analysis of first 100000 samples from a similar 
RR VC analysis for Holstein.  The problems 
were compensated by a longer burn-in period. 
In this study, Gibbs sampler chains were 
considerably longer, which allowed to discard 
first 70 000 samples. Estimated daily 
heritabilities were in good agreement with 
those obtained from the MC-EM REML 
analyses. Whether lower heritability estimates 
for FAY milk yield were due to the data 
structure, with protein and fat recording at 
every second TD only, has to be investigated 
closer. Differences in parameter estimates 
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between the both VC estimation methods were 
mainly found for genetic parameters for which 
ESS were low in the Bayesian analysis. These 
parameters converged slowly in the MC-EM 
REML analyses as well. MC-EM REML 
showed robust convergence behaviour but 
required between 2000 to 3000 rounds to 
ensure for all parameters convergence. 
Nevertheless, MC-EM REML was superior in 
computing time. Analysis of FAY required for 
one EM round 17.1 min, which was equal to 
computing time need for eleven Gibbs sampler 
rounds. Total computing times for FAY 
analyses were 35 days by the MC-EM REML 
and 282 days by the Gibbs sampler. An 
advantage of Gibbs sampling is that posterior 
standard derivations for VC and functions of 
VC can be obtained.  
 
 
 5. Conclusions 
 
Variance component estimates for large RR 
TD models were in good agreement between 
the two applied VC estimation methods; 
Bayesian analysis via Gibbs sampler, and MC-
EM REML. The implemented MC-EM REML 
algorithm was superior in computing time to 
the Gibbs sampler and has shown its potential 
to become the method of choice in future VC 
analysis of complex models. 
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