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Abstract 
 
Genomic prediction represents a revolutionary advancement in animal improvement by providing a 
means of improving the accuracy of estimated genetic merit for selection candidates with no 
individual or offspring records.  Despite the fact that it has already been widely used in dairy cattle 
improvement and is now available in some beef cattle circumstances, its predictive ability in terms of 
accounting for mendelian sampling rather than parent average merit is still poorly characterized.  
Improved characterization will be required in order for alternative breeding strategies to be fairly 
compared.  In the meantime, one consequence is that predictions will work better in offspring than in 
less related animals.  Among many other consequences of genomic prediction, it promises 
opportunities for basic research to be undertaken using industry populations along with information 
from routine evaluation, it promises more balanced selection, and it necessitates major developments 
in national and international software and evaluation procedures. 
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1. Introduction 
 
Genomic selection is based on estimated 
breeding values (EBV) that have been obtained 
using high-density genotypes spanning the 
whole genome.  The process of genomic 
prediction conceptually involves three steps, 
although these activities may be combined in a 
single analysis.  The steps are: characterization 
of the EBV of chromosome fragments, called 
the discovery or training analysis; prediction or 
summing up of the values of all the fragments 
carried by each selection candidate; and 
blending to pool information from genomic 
and conventional pedigree and performance 
analysis.  The approach promises faster genetic 
gain, and in certain circumstances, possibly at 
less cost or with lower rates of inbreeding than 
conventional breeding schemes based on 
individual measurement and progeny testing.  
In order to characterize the relative rates of 
gain, cost and inbreeding, it is necessary to 
know the predictive ability, and the costs of 
genotyping, among other factors.  Bovine 
whole-genome genotyping has principally 
been undertaken using the Illumina 50k 
beadchip for the last two years, with current 
costs at US$175.  However, higher density 

(≈800k @ US$270) and lower density 
(3k@unspecified price) Illumina beadchips 
have been promised for release later in 2010 as 
has a competitive high-density Affymetrix 
product, making objective comparison of 
alternative breeding schemes difficult with the 
cost uncertainty.  This paper focuses on what is 
known about current predictive ability using 
50k panels in cattle, and introduces some 
consequences of the current status of genomic 
prediction in cattle. 
 
 
2. Current Genomic Prediction 
 
2.1 Current Predictive Ability 
 
Breeding Values (BVs) can be considered as 
the sum of Parent Average (PA) effects plus 
Mendelian Sampling (MS) effects.  In an 
unselected population, each of these two 
components contributes 50% genetic variance.  
The goal of genomic prediction is to accurately 
estimate MS, because if this can be achieved 
PA can also be accurately estimated as PA is 
no more than accumulated MS effects from 
grandparental and earlier generations.  The 
converse is not true; it is possible to accurately 
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estimate PA without being able to estimate 
MS. In fact, that is the circumstance in 
conventional BV prediction using a pedigree-
based relationship matrix to predict the merit 
of individuals without their own or offspring 
records. 
 

Simulated data including quantitative trait 
loci (QTL) and markers such as single 
nucleotide polymorphisms (SNP) have 
demonstrated predictive abilities of 0.7-0.9 
(Meuwissen et al., 2001), accounting for 50-
80% total genetic variance.  It is tempting to 
assume such predictions do not discriminate 
between PA and MS and estimate both 
components equally well. 
 

Field data representing observed 
performance and actual SNP genotypes often 
achieve high correlations in the training data, 
but it is the correlation in new subpopulations 
that are of more interest.  Early whole genome 
analyses of the North American Holstein 
population (VanRaden et al., 2009) reported 
the PA reliability (R2) of animals without 
records or offspring to average 0.19 across 
traits and the genomic prediction to improve 
on that value by a further 0.18 increase.  In the 
international collaborative analysis of Brown 
Swiss performance, Jorjani and Zumbach 

(2010) similarly compared either the PA 
predictions from conventional evaluations or 
the genomic evaluations from 50k SNP panels, 
to the subsequent performance of progeny 
tested daughters, four years later.  Those 
analyses also demonstrated an increase in 
reliability of 0.18.  Some of that increase in 
predictive ability is likely due to improved 
prediction of PA, but assuming all of it was 
due to MS, and MS accounted for 50% genetic 
variance, then it would seem that these 
genomic predictions are predicting up to 36% 
genetic variance. 
 

There are fewer published reports of 
genomic predictions in beef cattle.  Analyses 
of US Angus bulls based on their published 
expected progeny differences (EPD) for a 
range of traits resulted in correlations between 
two-thirds data used in training and one-third 
used for validation as in Table 1 (from Garrick, 
2009).  In that study, the AI bulls were 
randomly allocated to three subsets according 
to the sire of the bull, such that paternal half-
sibs were not represented in more than one of 
the subsets.  The pooled correlations between 
genomic and realized performance ranged 
from 0.5-0.7, accounting for 25-50% genetic 
variance. 

 
Table 1. Correlations between 50k genomic prediction and realized performance for validation of 
Angus sires in independent Angus datasets for backfat (BFat), calving ease direct (CED) and maternal 
(CEM), carcass marbling (Marb), carcass ribeye area (REA), scrotal circumference (SC), weaning 
weight direct (WWD) and yearling weight (YWT). 

 
 

Trait 

Train 2 & 3 
Predict 1 

Train 1 & 3 
Predict 2 

Train 2 & 3 
Predict 3 

Overall1 

BFat 0.71 0.64 0.73 0.69 
CED 0.65 0.47 0.65 0.59 
CEM 0.58 0.56 0.62 0.53 
Marb 0.72 0.73 0.64 0.70 
REA 0.63 0.63 0.60 0.62 
SC 0.60 0.57 0.50 0.55 

WWD 0.65 0.44 0.66 0.52 
YWT 0.69 0.51 0.72 0.56 

1Overall correlation estimated by pooling the estimated variances and covariances from each separate validation. 
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2.2 Spurious Markers that are Predictive in 
Training 
 
Previous research aimed at discovering QTL 
for marker-assisted selection (MAS) was often 
characterized by media releases reporting 
discoveries that would revolutionize selection.  
In the US, enlightened producers demanded 
such discoveries be validated before their 
widespread adoption.  The validation studies 
(www.nbcec.org) were typically undertaken in 
sub populations that were reasonably 
independent of the discovery population, and 
spurious markers were readily identified.  
However, the extent of genomic training 
populations has now commonly expanded to 
include entire populations of AI bulls, making 
it impossible to validate discoveries in 
unrelated animals of the same breed. 
 

Consider a discovery population that is 
segregating a QTL, such that training animals 
can be categorized as having 0, 1 or 2 copies of 
the favorable allele.  The goal of genomic 
selection is to identify a physically linked 
polymorphism that can be used as a surrogate 
to indicate the number of copies of the QTL 
allele.  The strength of the relationship 
between the QTL and the marker is measured 
by their linkage disequilibrium (LD).  Given 
sufficient markers, there will commonly be a 
marker or a linear combination of the markers 
that are predictive of the number of QTL 
alleles in the training population, but that 
marker (or markers) may not necessarily be 
physically linked to the QTL.  The informative 
marker in the training population may even be 
on another chromosome from the QTL.  
Nevertheless, the marker would be predictive 
in training.  Such markers would be unlikely to 
demonstrate any predictive ability in 
independent validation.  However, applying 
these markers to offspring of the training 
animals can demonstrate spurious predictive 
ability, due to linkage rather than LD.  If the 
marker alleles were perfectly predictive of the 
number of QTL alleles in training, then the 
markers would correctly identify the gametes 
of bulls with 0 copies of the favorable allele, 
and correctly identify the gametes of bulls with 
2 copies of the favorable allele.  Only in 
heterozygous bulls whereby half the gametes 
would carry the favorable QTL allele, and an 

independent half of the gametes carry the 
favorable marker allele would the relationship 
breakdown.  Even in those gametes, the marker 
would by chance correctly predict the 
favorable QTL allele half of the time. 
 

Genomic predictions are based on summing 
the effects of many genomic regions, some 
which might be correctly identified in training 
while others are spurious.  Validation applied 
collectively to all the genomic effects would 
therefore exhibit some loss of predictive 
ability, with continued erosion in successive 
generations.  
 
 
2.3 Validation in Relatives and in Other 
Breeds 
 
Two options to further characterize the 
predictive ability of genomic approaches might 
be considered.  First, one could partition 
available populations into training and 
validation subsets, in a manner that controls 
the degree of relatedness between the 
populations.  Second, validation could be 
undertaken in another breed. 
 

A recent publication by Habier et al. 
(2010a) partitioned the German Holstein 
population into training sets, in such a way to 
control the maximum pedigree-based additive 
genetic relationship between any bull in 
validation and all bulls in training.  This 
partitioning was repeated in four scenarios to 
vary the level of relationship.  Random 
partitioning resulted in additive relationships 
as high as 0.6 between training and validation 
bulls.  Restricting the maximum relationship to 
0.49 produced partitions that prevented parent-
offspring relationships or splitting of full-sibs 
across training and validation subsets.  
Restricting the maximum relationship to 0.249 
prevented grand-parental and half-sib 
relationships across training and validation 
subsets.  A further scenario prevented 
maximum additive relationships from 
exceeding 0.1249.  Creation of these scenarios 
required that some bulls be excluded from both 
the training and validation subsets.  
Interestingly, these scenarios had little impact 
on the average maximum relationship between 
training and validation subsets that remained at 

http://www.nbcec.org/�
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about 9% for the first three scenarios.  The 
results in terms of correlations are in Figure 1, 
for predictions based on 1,048 training bulls 
using conventional pedigree analysis (P-
BLUP), and for methods using genomic 
relationship matrices with equal (G-BLUP) or 
heterogeneous SNP weighting (BayesB).  
Clearly the genomic predictions outperform 
pedigree-based methods, justifying their 
continued implementation, but the reduction in 
predictive power for the 0.1249 scenario is 
alarming for the use of genomic predictions for 
traits that are not routinely phenotyped every 
generation, as is the goal for beef cattle 
implementations for traits associated with 
reproduction, feed intake, disease and eating 
quality. 
 
Figure 1.  Correlations (ρ) between genomic 
predictions based on samples of 1,048 German 
Holstein training bulls and observed 
performance in validation subsets with training 
and validation animals partitioned to control 
the maximum additive relationship (amax) 
between any validation bull and all training 
bulls. 

 
 
Further validation analyses have been 

undertaken using North American Holsteins for a 
small (1,000 bull) or large (4,000 bull) training 
set comprising animals born after 1994, validated 
in animals born before 1975  (Habier et al., 
2010b).  Those results (Table 2) fail to account 
for more than 28% genetic variance.  However, 
the validation bulls would have been assessed 
from    progeny   performance   in    management  

 
 
 
 
 

circumstances quite different from today, so both 
heterogeneous variance and genotype-
environment interaction could have contributed 
to the reduction in predictive ability. 
 
Table 2. Correlations between North American 
Holstein 50k genomic predictions from 1,000 
or 4,000 training bulls born after 1994 and 
realized performance for bulls born before 
1975. 

 Training bulls 
Trait 1,000 4,000 
Milk 0.42 0.44 
Fat 0.48 0.52 

Protein 0.15 0.18 
Somatic Cell Count 0.14 0.28 

 
Validation of genomic predictions in other 

breeds provides a worst-case scenario in terms 
of predictive ability.  Across-breed predictions 
could perform poorly because of dominance, 
epistasis, genotype-environment interactions, 
variation in LD among breeds, among other 
reasons.  Training analyses based on North 
American milk yields from 8,512 Holstein 
bulls resulted in correlations of 0.194 in 742 
Brown Swiss bulls and 0.198 in 1,915 Jersey 
bulls from Bayes A, and 0.141 in Brown Swiss 
and 0.244 in Jersey from Bayes B.  Training in 
two of the three breeds and validating in the 
third, resulted in correlations of 0.077 in 
Brown Swiss, 0.197 in Jerseys and 0.253 in 
Holsteins.  Linkage cannot be contributing to 
these predictions, only LD and that accounts 
for less than 10% genetic variance. 
 

Any improvement on the accuracy of PA 
predictions provides opportunities for 
improved breeding schemes.  These results 
clearly indicate that genomic techniques can 
increase predictive ability and therefore have 
an immediate role in breeding schemes.  
However, there remains enormous potential for 
increasing the predictive ability to the levels 
that can be obtained in simulated data.  
Research is urgently required to further 
investigate methods in which some of this 
potential might be exploited in the near term. 
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3. Some Consequences of Current 
Circumstances 
 
3.1 Convergence of Basic and Applied 
Research 
 
Animal evaluation is applied research, and its 
implementation identifies, among selection 
candidates, those animals that are the best 
prospects to be parents of the next generation.  
Basic research includes investigating the 
biological mechanisms by which the offspring 
of some individuals outperform the offspring 
of other individuals.  Such studies have long 
been of interest to animal scientists, although 
to date physiologists have had more success in 
identifying the mechanisms involved in 
average levels of performance than in 
identifying mechanisms that are responsible 
for variation in performance.  Over the last two 
decades, numerous studies were undertaken to 
discover QTL, but most of these studies had 
little involvement with applied animal 
evaluation, other than perhaps using national 
EBV as data.   
 

The BV can be defined from a basic 
viewpoint as the sum of the average effects of 
alleles, summed over all the loci influencing a 
trait and the pair of alleles at each locus, from 
an applied viewpoint it has been a black box 
approach involving little more than a regressed 
estimate of twice the deviation of offspring 
performance.  The black box has the potential 
to be opened up with the introduction of 
genomic predictions. Genomic merit is 
computed as the sum of the allelic effects, and 
routine evaluation characterizes the value of 
every genomic location as part of the 
prediction process.  Accordingly, it makes 
sense for basic and applied researchers to work 
together and exploit all the information 
obtained from routine evaluation.  Knowledge 
of genomic locations that influence variation 
will allow the incorporation of biological 
information in the statistical analyses that drive 
genomic prediction.  Inspection of the 
variation accounted for by genomic regions 
demonstrates that the reduced ability to predict 
milk yield in Brown Swiss from across breed 
predictions shown in the previous section is at 
least in part due to the fact that based on 50k 
SNP, DGAT1 does not appear to be 

segregating in Brown Swiss.  Recognition of 
the portfolio of genomic regions or QTL that 
are common or unique to particular breeds 
would increase the accuracy of across-breed 
prediction. 

 
 
3.2 The Nature of Genetic Gain 
 
Selection should be focused on an objective 
derived from a breeding goal.  For profit-based 
goals, it should include a list of economically-
relevant traits along with their relative 
emphasis.  Such a list for beef or dairy cattle 
would typically include production, 
reproduction, disease, longevity and feed 
requirements.  In practice, many of these traits 
in the selection objective do not have 
corresponding selection criteria that can be 
cheaply and readily observed for use in animal 
evaluation.  In those circumstances, animal 
breeders have searched for indicator traits that 
can exploit correlations to predict merit, but for 
some traits such indicators are not apparent.  
Selection may therefore be practiced on only a 
subset of the traits in the selection objective. 
 

Genomic prediction offers the potential to 
predict merit for traits that are difficult, 
expensive or impossible to measure in 
conventional circumstances.  Such traits could 
then be included in the selection objective, 
without phenotypic information.  That would 
lead to a change in the nature of genetic gain.  
Current implementation of genomic selection 
in dairy cattle has focused on improving on the 
PA prediction for phenotyped traits such as 
production, whereas in beef cattle the major 
focus has been on difficult traits such as feed 
intake, reproduction, animal health and eating 
quality. 
 

Consider the nature of genetic gain for a 
circumstance relevant to beef and dairy cattle 
where profit is influenced by productivity and 
feed costs.  The selection objective would 
ideally reward more productive animals 
according to the value of their production at 
the same time as penalizing them in relation to 
their corresponding feed costs.  The best 
animals would be those that have the largest 
margin of productive income over feed costs. 
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Figure 2. A schematic ellipse representing the 
selection frontier for productivity (y-axis) and 
feed costs (x-axis).   Relative to the average of 
the population at the origin of the ellipse, point 
A represents the outstanding selection 
candidates for production that would be 
selected if EBV were not available for feed 
costs.  Point B represents outstanding 
candidates for profit, defined as the value of 
production less feed costs, for the angled iso-
profit lines determined by the ratio of 
economic values for production and feed costs.  
Animals at B would be selected if candidates 
could be ranked for both traits.  The arrow to A 
indicates the selection response increases 
production and feed costs if EBV were only 
available for production, whereas the arrow to 
B indicates that goal-based selection increases 
production, reduces feed costs, and collectively 
achieves a greater response in profit than 
selection for production alone. 

 
 
 
3.3 Ongoing Development of Genetic 
Evaluation Software 
 
A major consequence of genomic selection is 
that existing national evaluation software 
requires ongoing enhancements to exploit 
genomic information.  Initial implementations 
involved several steps, namely training 
analyses, genomic prediction of selection 
candidates followed by blending of genomic 
and conventional pedigree information.  
Combining these steps into a single analysis 
has appeal, and has been promoted by Mizstal 
et al. (2009) Legarra et al. (2009) and Aguilar 
et al. (2010).  The latter paper exploits a 
variance-covariance matrix among genotyped 

animals according to a genomic matrix (G), 
whereas variance-covariances among pedigree 
animals and between pedigree and genotyped 
animals involve modifications to the pedigree 
relationship matrix according to departures 
between the pedigree and genomic relationship 
matrices.  Those departures are (G - A22 )  
and (GA22

-1 ) , respectively, as shown below. 
 

var
upedigree
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This representation raises an interesting 

issue.  Suppose some pedigree animals have 
genotyped relatives without phenotypic 
records.  In that case, rather than using the 
usual inverse of the pedigree-based 
relationship matrix (A11

-1 ) , a better choice 
might be the inverse of the matrix adjusted for 
the known genomic relationships among the 
relatives. 
 

The relationship matrix defines the 
variance-covariances on the basis of 
probability theory.  Probabilities must be 
between 0 and 1, and cannot be negative.  The 
diagonal elements of the relationship matrix 
represent twice the probability that one allele 
at a locus is identical by descent to a randomly 
chosen allele at that locus.  Since there is a 
probability of 50% that the randomly chosen 
allele is the original allele, the diagonal 
element cannot be less than unity.  Similar 
arguments demonstrate that the covariance 
cannot be negative.  These features are 
consequences of an infinitesimal model. 
 

In practice, gametes do not have a random 
sample of alleles from an infinite number of 
loci, as the number of chromosomes is finite, 
and a typical pair of parental chromosomes 
experiences one crossover event at meiosis.  
Accordingly, the realized probability that 
alleles are identical by descent between 
relatives such as full-sibs may be a little larger 
or a little smaller than the average probabilities 
used in the relationship matrix.  Genotypic 
information can track genomic inheritance, and 
allow such departures from expectation to be 
quantified in the genomic relationship matrix.  
Consider the impact of such departure on 
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modifying the assumed average relationships 
of parents.  Suppose two parents are unrelated 
and non-inbred.  Their relationship matrix is 
therefore an identity matrix of order 2.  
Suppose they produce two full-sibs, and the 
genomic relationship matrix shows the fullsibs 
to be a little more closely related than 
expected, having a relationship with each other 
of 0.53 rather than 0.5.  Note that the genomic 
relationship matrix is estimated as a covariance 
matrix, rather than based on probability.  
Applying Legarra et al. (2009), the parents are 
estimated to be slightly inbred, and slightly 
related.  This makes sense, in order to have 
produced fullsibs that are more closely related 
than 0.5, from an infinitesimal model.  
However, suppose as is equally likely, the 
fullsibs were less rather than more related than 
expected, with a relationship with each other of 
0.47 rather than 0.53.  In that case, Legarra et 
al. (2009) results in the parents having 
relationships with themselves of less than 
unity, and a negative covariance.  Although 
such an outcome is possible from a variance-
covariance framework, it is inconsistent with 
our usual probabilistic approach to genetic 
relationships.  It is also different from the 
answer that is obtained if the exact approach is 
used to predict the parental relationship matrix 
conditional on the genotypes observed on the 
offspring.  It would be interesting to apply 
these calculations to national evaluation data to 
determine if this modification improves the 
predictive ability of PA calculations.  Such 
modifications not only have implications in the 
prediction of genetic merit, they also impact 
the calculation of reliabilities.  Ongoing 
research is clearly warranted to determine the 
most appropriate methods and the 
computational and interpretational 
considerations of these methods. 
 
 
4. Conclusions 
 
Genomic prediction has been confirmed in 
several studies to usefully increase the 
accuracy of prediction for young animals 
without individual or offspring records.  
Nevertheless, its predictive ability remains 
below values predicted from simulation 
studies.  Further, the extent to which it exploits 
linkage disequilibrium to predict mendelian 

sampling effects free from distortion due to 
linkage signals remains poorly characterized.  
This knowledge gap is more important in 
circumstances whereby training analyses are 
being undertaken for prediction in unrelated 
animals than when offspring are being 
predicted. 
 

Genomic prediction offers new 
opportunities for interaction between biologists 
trying to identify the causal nature of variation 
in inherited performance and those applied 
scientists involved in routine evaluation of 
selection candidates. 
 

The use of genomic prediction to rank 
animals for traits that have not been routinely 
phenotyped provides opportunities for more 
balanced selection than is the case when 
animals can only be evaluated for a subset of 
economically-relevant traits.  However, 
practitioners need to be a cautious in modeling 
the effects of such selection when the long-
term predictive ability of genomic-based 
methods is still uncertain. 
 

Software and other components of the 
information systems used to collect, analyze 
and report estimates of national and 
international genetic merit and corresponding 
reliabilities will require ongoing revision over 
the next few years as the philosophical basis, 
statistical approach and interpretation becomes 
progressively resolved by ongoing research 
endeavors. 
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