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Abstract 
 
Until recently, different commercial arrays with 300,000 to one million SNPs have been used for 
studies in human genetics. Samples from genome-wide association studies have been genotyped on 
different genotyping platforms, while much more markers were used for reference panels. To increase 
power of association studies, different data sets are combined by imputing the missing markers. 
Imputation techniques have proven to be very efficient and allelic imputation error rates were 
estimated to range between 0.5 and 2.5 %, depending on the study. Although markers densities are 
lower, these techniques can be applied in cattle too. Thanks to strong familial information and larger 
samples, low imputation errors rates (below one percent) can be achieved. Imputation error rates are 
directly influenced by marker density and genetic relationships between target and reference 
individuals. Even with arrays of 3000 SNPs, imputation can yield reasonable marker predictions. As in 
human genetics, the development of publicly available databases of influential animals genotyped at 
high density or even re-sequenced would be beneficial to the field. 
 
 
1. Introduction 
 
Nowadays different marker panels are 
available in cattle, such as the Affymetrix 10K 
SNP Bovine array or the Illumina Bovine 
SNP50TM chip. In addition, it is possible to 
design custom marker panels such as the 60K 
Illumina chip used by CRV and described in 
Charlier et al. (2008). Commercial genotyping 
arrays with more than 600,000 SNPs are under 
development (e.g., Illumina BovineHD). It is 
also expected that animal breeders will use 
small chip panels (e.g., Illumina Bovine3K) as 
suggested by Habier et al. (2009). Therefore, it 
is likely that cattle breeders will end up with 
their population genotyped on different marker 
panels and will be in need for solutions to 
combine all the data. 
 

In human genetics, different marker panels 
are also used. Genotyping technologies are in 
constant evolution. In the recent past, these 
panels ranged from approximately 300,000 to 
more than one million SNPs. 
 

The present paper briefly describes how 
genotypes from different marker panels are 
combined in human genetics and discusses 
whether the same techniques can be applied in 
cattle. 

2. Marker Panels in Human Genetics 
 
Commercial genotyping arrays with 
approximately 300,000 to 550,000 SNPs 
proposed by Affymetrix, Illumina or Perlegen 
are commonly used in genome wide 
association studies (GWAS). Arrays with more 
than one million SNPs are already available 
and arrays with up to 5 millions SNPs are 
projected. 
 

Individuals from the HapMap population 
(The International HapMap Consortium, 2005) 
have already been genotyped for 3.1 million 
SNPs. In the 1000 genomes project, more than 
1000 individuals are resequenced 
(www.1000genomes.org), which is the most 
complete genotyping technology. 
 
 
3. Benefits of Combining Data from 
Different Marker Panels 
 
GWAS for complex traits, such as risk of 
coronary disease, obesity, schizophrenia, 
height, Crohn's disease and many others (see 
for instance the WTCCC), have yielded 
relatively disappointing results since the 
identified risk loci explain only a small 
fraction of the genetic variance associated to 
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the trait of interest. In order to increase the 
power of these association studies, several 
research teams combined their data in a meta-
analysis study (e.g., Barrett et al., 2008; Willer 
et al., 2008). Hence, Barrett et al. (2008) 
estimated that such combination allowed them 
to detect effects below 1.2 odds ratio that were 
unlikely to be detected in the original designs 
taken separately. However, samples are not 
always genotyped on the same marker array, 
which makes potential meta-analyses more 
difficult to implement. Another way to 
increase the power of GWAS is to supplement 
the sample under study with HapMap 
genotypes (or genotypes from any other 
reference panel). In both cases, the most 
popular method used for combining these data 
is to predict the missing markers, which is 
termed "imputation". 
 
 
4. Marker Imputation 
 
4.1. Principle 
 
Marker imputation consists in locally matching 
haplotypes of individuals genotyped with a 
given array with reference sequences obtained 
from individuals genotyped at higher density. 
The missing markers of the individuals can 
then be predicted by using the corresponding 
markers of the matching reference sequence. 
Generally, imputation is based only on linkage 
disequilibrium and reference sequences are 
obtained without using individuals genotyped 
on the "lower" density arrays. 
 
 
4.2. Methods for marker imputation 
 
Imputation methods often rely on haplotyping 
methods. The most popular methods are 
IMPUTE (Marchini et al., 2007), MACH (Li et 
al., 2006), fastPHASE (Scheet and Stephens, 
2006) or Beagle (Browning and Browning, 
2007). Each of these approaches can be 
described with a Hidden Markov Model. 
IMPUTE uses haplotypes of HapMap 
individuals as reference sequences. 
FastPHASE uses these individuals to 
determine a set of K (generally between 10 and 
20) ancestral haplotypes as reference 
sequences. Beagle constructs a tree with all the 
haplotypes of the reference panel and then 

summarizes it in a directed acyclic graph by 
joining nodes of the tree. Beagle is faster than 
IMPUTE or fastPHASE. For a review of 
imputation methods, see Browning (2008) for 
instance. 
 
 
4.3. Accuracy 
 
Some examples of accuracies obtained with 
individuals genotyped on commercial arrays 
can be found in Browning and Browning 
(2007) or Willer et al. (2008). Browning and 
Browning (2007) compared Beagle and 
fastPHASE and obtained allelic imputation 
error rates below 1% for individuals genotyped 
on an Affymetrix 500K array. Willer et al. 
(2008), in a meta-analysis studying coronary 
artery disease, estimated that the allelic 
imputation error rate was equal to 1.46 for 
individuals genotyped on the Affymetrix 500K 
array and 2.14 for those genotyped on the 
Illumina HumanHap300 array. 
 
 
4.4. Increased power with imputed data and 
cost effective genotyping 
 
Anderson et al. (2008) or Spencer et al. (2009) 
demonstrated that using, in addition to the 
genotyped markers, imputed genotypes (based 
on the HapMap panel) increased the power of 
GWAS. For instance, with Illumina 
HumanHap300 and Affymetrix 500K arrays, 
power increased from 0.392 and 0.363 to 0.467 
and 0.450, respectively (Spencer et al., 2009). 
The same authors concluded that the most cost 
effective genotyping design (measured as the 
highest power at constant cost) was achieved 
by using the Illumina HumanHap 300 array 
rather than higher density genotyping arrays. 
 
 
4.5 New variants identified 
 
In several studies, new variants were identified 
using the imputation technique. These variants 
had not been identified with traditional 
approaches in initial experiments. For instance, 
Barret et al. (2008) in Crohn's Disease or 
Purcell et al. (2009) in schizophrenia and 
bipolar disorder detected new associations in 
large meta-analyses. Further, the use of 
imputed markers from the HapMap data set led 
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to identifying new variants for type 2 diabetes 
in Zeggini et al. (2008). 
 
 
4.6 Reduction of computational costs 
 
Imputation methods are computationally 
expensive, depending on the number of 
individuals and markers involved. Even if 
software optimizations can sometimes reduce 
the computational burden, strategies are still 
needed to save CPU time. Hence, splitting 
chromosomes in pieces allows to reduce total 
computation time but at the expense of using 
more processors. Moreover, this approach is 
not optimal for all positions along the 
chromosome. 
 

One way to save computational and 
economical cost applied in human genetics is 
the development of public reference databases, 
such as the HapMap project or the 1000 
genomes project. Thanks to these databases, 
reference panels genotyped at high density (or 
re-sequenced) are available to everyone. In 
addition to the raw genotypes, processed data 
is also shared: phased data, linkage 
disequilibrium, recombination maps, 
imputation model parameters, GWAS results 
and sometimes phenotypes. 
 
 
5. Use of Imputation in Dairy Cattle 
 
5.1. Linkage disequilibrium and marker 
density 
 
Comparison of LD patterns in human (e.g., 
Jakobsson et al., 2008) and cattle (e.g., Gautier 
et al., 2007) show that, at equal marker 
density, imputation can be performed in cattle 
as efficiently as in human. However, 
genotyping arrays used in human rely on at 
least 300,000 SNPs whereas cattle, arrays are 
currently limited to 50,000 SNPs. In addition, 
low density chips with approximately 3000 
SNPs are planned to be used in cattle (e.g., the 
Illumina Bovine3K). Therefore, imputation in 
cattle will rely on lower density maps for a 
while. On the other hand, other factors might 
favor efficient imputation in cattle, such as the 
availability of strong familial information and 
the huge sizes of some of the genotyped 
populations. 

5.2. Application of imputation in cattle 
 
Hayes et al. (2009) applied imputation 
techniques with fastPHASE (Scheet and 
Stephens, 2006) on bulls genotyped with a 50K 
marker panel. With a few missing genotypes, 
they estimated that the allelic imputation error 
rate was approximately equal to 1.3%. 
 

T. Druet, C. Schrooten and A.P.W. de 
Roos, A.P.W. (in preparation) applied Beagle 
(Browning and Browning, 2007) and 
DAGPHASE (Druet and Georges, 2010) to 
carry out the imputation for the EuroGenomics 
project. In the preceding feasibility study, they 
divided a bovine 50K array into two chips of 
approximately 27.5K SNPs. Then, the 1000 
individuals with the largest number of 
descendants were genotyped on all the markers 
(i.e., were doubly genotyped) as a reference 
panel. To evaluate the imputation efficiency, 
two designs were tested. In the first design, all 
the 3738 remaining animals were genotyped on 
the same chip whereas in the second design, 
2351 and 1387 animals were genotyped on 
each chip. Overall allelic imputed errors rates 
were equal to 0.65% and 0.50% with the first 
and second design, respectively. A number of 
parameters were shown to affect the allelic 
imputation error rate, including the size of the 
reference panel (number of animals genotyped 
on all markers), marker density and genetic 
relationships between target and reference 
individuals. 
 

Figure 1 shows the effect of marker density 
on the allelic imputation error rate. Marker 
density was measured as the number of 
genotyped markers in the Mb surrounding the 
imputed marker. At low marker densities, 
imputation error rates decrease abruptly with 
the number of markers. For instance, error 
rates were above 3% with zero or one marker 
in the Mb surrounding the imputed marker and 
below 1% with so few as 5 markers. At the 
higher marker densities available today (10 to 
20 markers per Mb), allelic imputation error 
rates ranged from 0.66% to 0.50%, while they 
were still decreasing, albeit slowly, at even 
higher densities, thus suggesting that upcoming 
high-density marker panels will effectively 
improve imputation. 
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Figure 1. Effect of marker density on the allelic imputation error rate. 

 

In addition to the effect of marker density, 
the influence of genetic relationships between 
target and reference individuals was also 
studied. This relationship for a given pair of 
individual was scored as the expected 
proportion of the genome inherited from the 
reference individuals by the target individual. 
For instance, this score is equal to 0.5 when a 
single parent is genotyped on all markers and 
1.0 when both parents belong to reference 
individuals. The relationship between this 
genetic score and the allelic imputation error 
rate is described in Table 1. As expected, the 
imputation efficiency increases with the score. 
When both parents were genotyped, the 
imputation error rate was below 0.15%, with 
imputation relying only on linkage. For other 
haplotypes, LD information is used when the 
parent is not genotyped. Finally, the allelic 
imputation error rates were also estimated with 
a low density chip containing 3000 SNPs. In 
that case, imputation error rates increased 
above 5% for scores below 0.75. For most 
animals, errors rates ranged between 3 and 4% 
whereas they dropped to 0.5% when both 
parents were genotyped. 
 
Table 1. Allelic imputation error rate as a 
function of the relationship "score". 
 
Score Imputation error rate 
< 0.75 1.16 % 
0.75 ≤ . <0.90 0.91 % 
0.90 ≤ . <0.95 0.79 % 
0.95 ≤ . <1.00 0.70 % 
1.00 0.14 % 

 
5.3. Computational issues 
 
With the increasing number of genotyped 
animals and/or markers, important 
computational issues arise. Several options can 
be applied to reduce the computational burden. 
First, the imputation step can be dropped or 
reduced by constructing genomic relationship 
matrices relying only on genotyped SNPs 
(Legarra et al., 2009), by using only 50K SNPs 
for genomic selection or by focusing only on a 
subset of genomic regions. CPU requirements 
can also be reduced by applying strategies 
similar to variance components estimation, i.e., 
estimating model parameters less frequently 
(not at each imputation) and only on a subset 
of the genotyped individuals (although 
parameters are estimated more precisely when 
using all the data). In addition, imputation can 
be carried out sequentially. To impute newly 
genotyped animals, only genotyped relatives 
and model parameters are required. Therefore, 
the imputation does not need to be performed 
on the complete data set. Finally, public 
reference databases (as those implemented in 
human genetics) could save both genotyping 
costs and CPU time. Indeed, for imputation 
(and other operations too), a reference panel 
genotyped at a higher density is required. 
Sharing such a reference panel for one breed 
would certainly lead to big savings in 
comparison to using one different reference 
panel in each country. Another advantage of 
this approach is that parameter estimation 
could be performed once for all on the 
common reference panel and shared among 
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partners. Some pre-processed data, such as 
phased data, might also be shared. 
 
 
6. Conclusions 
 
In human genetics, individuals genotyped on 
different marker arrays are combined into 
meta-analyses in order to increase the power of 
association studies. Further, reference panels 
genotyped at high density are jointly analyzed 
with samples genotyped on commercial arrays 
using imputation techniques. These techniques 
can also be successfully applied in cattle where 
large data sets with strong familial information 
are available. Imputation in cattle might also 
benefit from shared public reference databases 
with important individuals genotyped at high 
density. 
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