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Abstract 
 
Accurate genomic evaluations are less costly if many animals are genotyped at less than the highest 
density and their missing genotypes filled using haplotypes. Mixed density files for 45,870 animals 
were examined by reducing half of young animal or all animal genotypes from the observed 43,385 
markers to a subset of 3,209 markers. For young Holsteins genotyped with 3,209 markers, the gain in 
net merit reliability was 79% of the gain from genotyping 43,385 markers. When half of the reference 
population had 3,209 markers, gain was 90% for young animals with 43,385 markers and 73% for 
young animals with 3,209 markers. Gain was 66% when all animals had only 3,209 markers. 
Simulated gain in reliability from increasing the number of markers to 500,000 was only 1.4%, but 
more than half of that gain could result from genotyping just 1,586 bulls at higher density. Reliability 
improved when more reference animals were genotyped at higher density. Individual reliabilities can 
be adjusted to account for number of markers and success of imputation. 
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Introduction 
 
Genomic selection will be more efficient and 
affordable when breeders evaluate animals 
with different genetic marker sets available for 
different prices. Instead of genotyping all 
animals at the highest marker density, 
genotypes of different densities can be 
combined. The missing genotypes in the lower 
density sets can be filled (imputed) from 
genotypes or haplotypes of relatives or from 
matching allele patterns in the general 
population. 
 

Lower density panels could be selected to 
include only the most significant markers from 
a larger set to maximize reliability for a 
particular trait, but reliability for other traits 
may be low if correlation to the selected trait is 
low. A second option is to include equally 
spaced, highly polymorphic markers and to 
impute the missing genotypes, giving 
increased reliability for all traits. Previous 
studies such as Weigel et al. (2009) have 
compared differing marker densities, but only 
a few recent studies have tested genomic 
evaluation using mixed density and imputation 
(Druet et al., 2010; Habier et al., 2009; Weigel 
et al., 2010a). 

 
Both lower and higher density marker 

panels have been designed for use in genomic 

evaluation. The imputation methods reported 
here have been tested on mixtures of simulated 
markers with a range of densities from 500 to 
500,000. The current report investigates actual 
346 and 3,209 marker subsets of the 43,385 
marker genotypes in the North American 
database and also compares mixtures of 50,000 
and 500,000 simulated markers for this same 
population.  

 
 

Methods 
 
Actual genotypes of 40,351 Holsteins, 4,064 
Jerseys, and 1,455 Brown Swiss were used in 
comparing the full set of 43,385 markers 
(Wiggans et al., 2010) to a subset of 3,209 
evenly spaced markers selected for inclusion 
on an Illumina chip. The Holstein population 
included 24,306 males and 16,045 females, 
with 96% of the sires but only 31% of the 
dams genotyped. An earlier population of 
25,365 Holsteins was used to test a subset of 
346 selected markers with largest effects for 
net merit. 

Two mixed density sets were constructed 
by 1) reducing half of all animals to low 
density (3,209 markers) or by 2) reducing half 
of only the young animals to 3,209 markers. 
Animals were assigned low density if the last 
digit of the identification number was even. A 
third analysis 3) used regressions on only the 
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3,209 markers for all animals to determine the 
loss from only using low density as compared 
to mixed density.  

 
Haplotypes were formed and genotypes 

imputed using Fortran program findhap.f90. 
The program begins by dividing each 
chromosome into segments of about 250 
markers and listing all haplotypes by matching 
each genotype to the list of haplotypes. This 
population haplotyping step is analogous to the 
fastPhase and IMPUTE methods tested by 
Weigel et al. (2010a) on the Jersey data file. 
The program ends with pedigree haplotyping 
steps to detect crossovers, fix noninheritance, 
and impute nongenotyped ancestors. Imputed 
genotypes are used in the evaluation only if at 
least 90% of the ancestor's haplotypes can be 
determined from progeny. 

 
Genomic evaluations were computed with 

the iterative, nonlinear Fortran program 
densemap.f90 of VanRaden (2008). The model 
included a polygenic effect assigned 10% of 
genetic variance with 43,385 markers or 30% 
with 3,209 markers, and the remaining 
variance was modeled by the marker effects. 
For Holsteins, computing times using one 
processor were 2.2 hours to complete the 
haplotyping and 6.5 hours to complete 130 
iterations for 5 traits evaluated together. 
Memory requirements were 0.7 gigabytes for 
haplotyping and 1.3 gigabytes to solve the 
genomic equations. 

 
Only the most recent data from April 2010 

was used in this study instead of using 
truncated data. In most previous studies, 
differing models or data subsets were 
compared by predicting recent data from 
historical data. Squared correlations among 
subset GEBV, full set GEBV, and parent 
average (PA) were used to obtain the gain in 
reliability above PA reliability from using a 
marker subset as a percentage of the gain from 
the full set:  

 
% of gain = 100 [corr2(subset, full set) - 

corr2(PA, full set)] / [1 - corr2(PA, full set)]  
 
Simulated 500,000 marker genotypes were 

used to estimate the numbers of animals 
needed for higher density genomic selection. 
Three simulated data sets included 1,586, 
3,726, or 7,398 bulls genotyped with 500,000 

markers and the remainder of the 33,414 
Holsteins genotyped with 50,000 markers. 
Using one processor, haplotyping required 3.1 
hours and 2.8 gigabytes of memory, and 
evaluation of 5 traits (replicates) required 150 
iterations, 2.5 days, and 7.9 gigabytes of 
memory. 

 
Maximum genomic reliability that can be 

obtained in practice (RELmax) is limited by the 
maximum marker density and by the size of 
the reference population. As the reference 
population becomes infinitely large, reliability 
should approach 1 minus the fraction of 
polygenic variance (poly). Total daughter 
equivalents (DEmax) from the reference 
population can be obtained by summing 
traditional reliabilities (RELtrad) minus the 
reliabilities of parent average (RELpa), 
multiplying by the ratio of error to sire 
variance (k), and dividing by the equivalent 
reference size (n) needed to achieve 50% 
genomic REL (VanRaden and Sullivan, 2010):  

 
DEmax = ∑(RELtrad - RELpa) k / n.  
 
Conversion of DEmax to genomic REL 

should account for genotyped SNP not 
perfectly tracking all QTL in the genome 
because full sequences are not available. 
Multiplication by 1 - poly prevents reliability 
from reaching 100%. If all reference animals 
are genotyped at the highest chip density, 
expected genomic REL for young animals 
without pedigree information can be calculated 
as:  

 
RELmax = (1 - poly) DEmax / (DEmax + k). 
 
Genomic reliabilities for individual animals 

can account for their traditional reliabilities, 
numbers of markers genotyped, quality of 
imputation, and relationship to the reference 
population. Each animal's traditional REL is 
converted to daughter equivalents (DEtrad), and 
these are added to DEmax adjusted for any 
additional error introduced by genotyping at 
lower SNP density. The reduced daughter 
equivalents from genomics (DEgen) can be 
calculated from the squared correlation 
between estimated and true genotypes 
averaged across loci (RELsnp) for each animal 
as: 

 
DEgen = k RELmax RELsnp / (1 - RELmax 

RELsnp) 
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Animals less related to the reference 
population may have lower DEgen (Liu et al., 
2010). The animal's total reliability RELtot is 
computed from the sum of the daughter 
equivalents as: 

 
 RELtot = (DEtrad + DEgen) / (DEtrad + DEgen + 
k) 
 
  
Results 
 
Numbers of non-genotyped dams that had at 
least 90% of haplotypes imputed from progeny 
were 2254 Holsteins, 184 Jerseys, and 68 
Brown Swiss. Squared correlations of their 
genomic with traditional evaluations for net 
merit were 0.76 for Holsteins, 0.81 for Jerseys, 
and 0.91 for Brown Swiss. Larger correlations 
are expected with smaller reference 
populations. Squared correlations of genomic 
evaluations for imputed dams obtained when 
half of their progeny had 3,209 markers 
genotyped or when all progeny had 43,385 
markers were 0.87 for Holsteins, 0.94 for 
Jerseys, and 0.93 for Brown Swiss. Thus, 
inclusion of some progeny with only 3,209 
markers resulted in less accurate imputation of 
their dams and less gain in reliability. 
 

When reference animals all had 43,385 
SNPs, squared correlations were 0.90 or higher 
between young animal GEBV computed using 
full data or imputed using 3,209 SNPs (Table 
1). Gains in reliability from 3,209 SNPs were 
79-88% of the gain from 43,385 SNP if 
haplotyping was used, but were only 61-63% if 
regressions on the 3,209 SNPs were used in 
analysis 3. 

 
When half of the reference animals had 

only 3,209 SNP genotyped, gains in reliability 
for net merit for progeny genotyped with 
43,385 SNP were 90% of gains from the full 
data for Holstein, 82% for Jersey, and 84% for 
Brown Swiss (Table 2). Respective gains in 
reliability for young animals genotyped with 
3,209 SNP decreased to 73%, 56%, and 72% 
of the full set gains when half of the reference 
animals also had only 3,209 SNP genotyped. 
Jersey and Brown Swiss PA results differed in 
the two subsets due to small numbers. 

 
 

Table 1. Squared correlations and percentage 
of reliability gain using 3,209 to impute 43,385 
markers for Holstein young animals. 
 
 Squared correlations 3K gain  
Trait 3K, 43K PA, 43K % of 43K 
Net merit 0.90 0.52 79 
Milk 0.92 0.52 83 
Fat 0.92 0.52 83 
Protein 0.92 0.56 82 
Fat % 0.92 0.34 88 
Protein % 0.92 0.47 85 
Productive life 0.93 0.50 87 
Somatic cells 0.91 0.42 85 
Pregnancy rate 0.94 0.54 86 
 
Table 2. Percentage of net merit reliability 
gain for young animals when half of all 
animals had 3,209 or 43,385 markers (part 
data).  
 
Markers for Squared correlations % of   
young animals Part, Full PA, Full Full gain 
Holstein    

43,385 0.95 0.51 90 
3,209 0.87 0.51 73 

Jersey    
43,385 0.91 0.51 82 
3,209 0.81 0.57 56 

Brown Swiss    
43,385 0.94 0.63 84 
3,209 0.93 0.73 72 

 
The lower density panel of 346 markers 

selected for net merit gave gains that were 
smaller and more variable across traits (14-
55%) as compared to the 43,385 gain when 
evaluated using 346 regressions (Table 3).   

 
Table 3. Squared correlations and percentage 
of reliability gain with 346 selected vs. 43,385 
markers. 
 
 Squared correlations  
Trait 346, 43K PA, 43K % of gain 
Net merit 0.73 0.60 33 
Milk 0.62 0.51 22 
Fat 0.69 0.52 35 
Protein 0.63 0.54 20 
Fat % 0.69 0.31 55 
Protein % 0.60 0.46 26 
Productive life 0.65 0.55 22 
Somatic cells 0.50 0.42 14 
Pregnancy rate 0.63 0.56 16 
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Gains increased to about 80% when 
evaluated using methods of Habier et al. 
(2009) for animals with 346 SNP and both 
parents genotyped for 43,385 SNP, but 
remained small if parents were not genotyped. 
Gains were 90% for progeny genotyped with 
3,209 SNP and both parents with 43,385 SNP. 
Gains were above 70% if parents were not 
genotyped. A primary advantage of using more 
markers in young animal selection is more 
precise evaluation of those without genotyped 
parents. Results in Table 1 are similar to those 
obtained by Weigel et al. (2010b) from Jersey 
genotypes, but results in Table 2 are more 
favorable, probably because of the use of 
pedigree information in the haplotyping 
algorithm. 

 
With 500,000 simulated markers for all 

genotyped animals, reliability for young bulls 
averaged 84.0% as compared with 82.6% 
using a 50,000-marker subset (Table 4). 
Reliabilities for three mixed densities were 
intermediate, ranging from 83.4% to 83.7%. 
Percentage of missing alleles that could not be 
determined from haplotypes ranged from 5.3% 
with 1586 bulls to 1.5% with 7,398 bulls. 
Recent refinements to the haplotyping 
algorithm have improved the call rates and 
reliabilities compared to earlier tests on the 
same data. 

 
Reliabilities expected with larger reference 

populations and larger marker densities are in 
Figure 1. Expectations in the graph are for net 
merit using a single density, but combined 
densities instead allow genotypes to be 
imputed, bringing reliabilities much closer to 
those possible when all animals are genotyped 
at highest density. The graph reflects the 1.4% 
increase in reliability observed at highest 
density rather than the 10% polygenic variance 
assumed in U.S. evaluations. Methods to 
estimate proportions of correctly called 
genotypes or squared correlations of estimated 
and true genotypes are needed for individual 
animals so that RELsnp can be included in the 
published REL.  

 
 
 
 
 

Figure 1. Expected reliabilities by reference 
population size using only 3K, 50K, or 500K 
SNP. 
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Conclusions 
 

Mixed marker sets can give good reliabilities 
for all animals at less cost. Animals genotyped 
at lower density can have their missing 
genotypes imputed from higher density 
haplotypes of relatives or from other members 
of the population. Average gains in reliability 
with 3,209 SNP for young animals were 79-
88% of those with 43,385 SNP if imputing was 
used but only 61-63% without imputation. A 
smaller set of 346 markers selected for net 
merit provided 80% of the gain in reliability if 
both parents were genotyped at high density, 
but gain was much lower if parents were not 
genotyped and only 33% if regression instead 
of imputation was used. 
 

The reference population can also include 
animals with lower density genotypes after 
imputing these to the higher density. When 
half of the reference population was genotyped 
with 3,209 SNP, gains in reliability were 90% 
of those from the full Holstein data set for 
progeny genotyped with 43,385 SNP and 73% 
for progeny genotyped with 3,209 SNP.  

 
When higher density panels are introduced, 

mixed density datasets may be the only option 
because breeders will not regenotype all 
reference animals. With 500,000 simulated 
markers, reliability increased by 1.4%. Most of 
that gain could be achieved using only a few 
thousand animals genotyped at higher density, 
and only 2-6% of the missing genotypes could 
not be determined for the animals with 50,000 
markers observed.  
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Differing marker sets for large populations 
can be combined with just a few hours of 
computation. Further improvements to 
imputation algorithms may allow smaller 
fractions of animals to be genotyped at highest 
density. For animals genotyped at lower 
density, reliabilities are lower if reliabilities of 
imputed genotypes are less than 1. More 
precise estimates of reliability will allow 
breeders to properly balance benefits vs. costs 
of using different marker sets. 
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Table 4. Missing genotypes before and after haplotyping and reliabilities by marker density and by 
number of animals genotyped with 500,000 markers (n). 
 Single density: Mixed density: Single  

density: 
Genotype missing 
rates 

50,000; 50,000 and 500,000 500,000; 

and genomic reliability n = 0 n = 1,586 n = 3,726 n = 7,398 n = 33,414 
Missing before (%) 1 88 80 70 1 
Missing after (%) 0.05 5.3 2.3 1.5 0.05 
Genomic reliability 
(%) 

82.6 83.4 83.6 83.7 84.0 
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