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___________________________________________________________________________ 
Abstract 
 
In an attempt to understand evaluations based on single nucleotide polymorphisms (SNPs),  equations 
for SNP effects expressed in terms of SNP deviations were examined for BLUP and Bayesian 
methods. The SNP deviations from Bayesian methods were higher and more varied compared to 
BLUP.  It seems that Bayesian methods were able to more differentially and appropriately weight 
computed SNP deviations by estimating different variances for each SNP. The influence of parent 
average (PA) on GMACE evaluations for young bulls in the importing country when a  bull has only a 
genomic breeding value (GEBV) in the exporting country was also examined. The GMACE proof of 
such young bulls could be reduced by up to 63% in the importing country when the PA is low.  
__________________________________________________________________________________ 
 
Introduction 
 
The use of simplified equations showing the 
contributions of various sources of information 
to the evaluations of animals are important to 
the understanding of evaluations. VanRaden 
and Wiggans (1991) first presented such 
equations   for animal model evaluations. 
These equations have been extended to multi-
trait across country evaluations (Mrode and 
Swanson, 1999) and random regression models 
(Mrode and Swanson, 2004). With the rapidly 
increasing advances in genomic evaluations 
using SNPs, this paper examined SNP 
deviations (marker deviations, VanRaden, 
2008) under various models using real data and 
the associated weights. Secondly the influence 
of parent average on the GMACE proofs of 
young bulls in the importing country when 
such bulls have only genomic breeding values 
(GEBVs) and no daughters in the exporting 
country was examined assuming varying 
genetic correlations between countries.  
 
 
Materials and Methods 
 
Genotypic and phenotypic data editing 
 
The genotypic data used for study consisted of 
54,001 (SNPs) from the Illumina Bovine50 
Beadchip on 755 Holstein-Friesian AI sires 
with daughters in Ireland. After data edits, 

42287 SNPs were available on each bull. The 
study is part of the on going validation exercise 
of software on 
http://www.genomicselection.net. Bull 
daughter yield deviations (DYDs) for 305-day 
milk yield and the associated reliabilities, 
evaluated by the Irish Cattle Breeding 
Federation in the January 2009 domestic 
genetic evaluations were available. Parental 
contribution to the reliability of each DYD was 
removed using the approach of Harris & 
Johnson (1998) for PTAs and this adjusted 
reliability will be used as weights in the next 
stage of this study. SNPs were coded as 0 
(homozygote), 1 (heterozygote) and 2 
(homozygote). 
 
 
Genomic evaluations 
 
Using a linear model, the equation for SNP 
effects (VanRaden, 2008 ) is 
 
 û = (Z’R-1Z + Iα )-1 Z’R-1(y- Xβ)       (1) 
 
For the jth SNP, this can be expressed as  
 
ûj = (zj’r-1zj + α )-1 zj’r-1 zj (ydj) 
 
ûj = wtj (ydj) 
 
where ydj is the  SNP deviation for the jth  
SNP, that is,  data information for that SNP 
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corrected for all effects apart from the SNP  
and  the SNP deviation can be defined as  ydj  
=  zj’r-1 (y – ziûi -  xβ),  i ≠ j    and wtj = (zj’r-1zj 
+ α )-1 zj’r-1 zj. The direct genomic breeding 
value (âi) of animal i therefore is  
   

∑=
j

ia )(ydwtzˆ jjj  

 
In the case of Bayesian methods, there is an 

additional component as a result of sampling 
from the conditional posterior distribution of u, 
such that  
 
ûj = wtj (ydj) + N(ûj, (zj’r-1zj + αj )-1 σ2e) (2) 
 

The second term on the right hand side 
tends towards zero averaged over all samples 
after the burn in period.  The estimates for the 
second term in this study averaged from all 
samples after the burn in period were 10-0.5 and 
0.0008 for BayesA and BayesB respectively.  
The proportion of SNP effects set to zero in 
BayesB was 0.34. To gain an understanding of 
SNP estimates from the various models SNP 
deviations and associated weights were 
computed for BayesA, BayesB and BLUP and 
compared. For the Bayesian methods, the 
MCMC chains were run for 80000 cycles, the 
first 24000 of which were discarded as the 
burn in period. In the case of BayesB, 20 
Metropolis-Hastings cycles were undertaken 
within each MCMC chain. These analyses 
were carried out using software at the 
http://www.genomicselection.net. The genetic 
variance used for BLUP was the sire genetic 
variance for 305-day milk yield divided by the 
number of SNPs and the residual variance was 
that estimated from BayesA.  One of the major 
draw backs of Bayesian methods is the 
sometimes enormous computing time.  
However, the genetic variances and residual 
variance estimated using Bayesians methods 
could be used in BLUP. The efficiency of 
using such genetic parameters in BLUP 
evaluations was also examined.   
 
 
GMACE 
 
Secondly, the prediction of young bulls which 
have only GEBV and no daughters in the 
exporting    country    was    examined   in    an 

importing country using a small data set 
consisting of 16 animals. The GMACE 
evaluations in the importing country for these  
bulls is a function of  only two components, 
parent average and Mendelian sampling, given 
the genetic parameters, so results will still be 
relevant in spite of the small data set. Just as in 
MACE, the GMACE proof of a young bull 
with no progeny can be obtained as 
 

CD2WPA1Wa +=bullˆ             (3)                    
  
where CD is the de-regressed proof corrected 
for country effects, W1 and W2 are the product 

of ( bullα1GZ1RZ' −+− )-1 and 

parα12 −G and   Z1RZ' −  respectively and 

bullα  = 2 parα  with parα = 8/11, 8/15, 2/3 or 
1/2 if both sire and maternal grandsire (mgs), 
only mgs, only sire or no parents are known 
respectively. When a bull has a proof only in 
country i and not in j, its GMACE proof in 
country j, from equation [3] reduces to: 
 
   âj  =  PAj  - (gij/gii)(âi - PAi) ,  
 
where  gij and  gii are elements of  G              
 

The influence of genetic correlations was 
examined on two bulls with GEBVs in the 
exporting country but with parent averages in 
the importing country about one standard 
deviation below and half standard deviation 
above the country mean respectively.  Three 
genetic correlations between countries were 
investigated: 0.95, 0.85 and 0.65. Heritability 
was assumed to be 0.36 in country 1 
(importing country) and 0.30 in the exporting 
country. The bulls with GEBVs were assumed 
to have a genomic reliability of 0.67 in the 
exporting country and the corresponding 
daughter equivalents were computed.  The 
percentage of common genotyped (c12) bulls 
in both countries was assumed to be 80 
percent.  
 

Also using equation (3) the relative weights 
on PA and CD were investigated in MACE and 
GMACE for a bull with daughters in both 
countries with c12 assumed to  be 0.3, 0.7 or 
0.95  and the genetic correlation assumed to 
0.95. 
 

http://www.genomicselection.net/�
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Results and Discussion 
 
Genomic evaluations 
 
The summary statistics of estimates of SNP 
effects and SNP deviations and associated 
weights for the BLUP, BayesA and BayesB are 
presented in Table 1. The estimates of genetic 
variances for the SNPs were higher and more 
variable for BayesB compared with BayesA 
probably because BayesB sets 34% of the SNP 
effects to zero.  Consequently, the SNP 
deviations and associated weights were higher 
for BayesB compared with the other two 
methods; the absolute mean of the SNP 
deviations and associated weights were lowest 
for BLUP. It seems that Bayesians methods 
were able to more differentially and 
appropriately weight computed SNP deviations 
by estimating different variances for each SNP. 
However weights on SNP deviations were 
lowest with BLUP and given that alpha term is 
constant, this weight seems to be more 
dependent on allele frequencies.  The 
correlation between the weights and allele 
frequencies was 0.99 for BLUP, 0.40 for 
BayesA and -0.05 for BayesB. However, the 
alpha term in BayesB had a strong positive 
correlation (0.78) with SNP deviations but this 
correlation was zero for BayesA. The 
correlation between SNP deviations and SNP 
effects was 0.37 for BayesA, 0.33 for BayesB 
but was 0.99 for BLUP. Interestingly, the 
correlation between the SNP genetic variances 
and SNP effects was -0.96 for BayesA and -
0.91 for BayesB, indicating that SNP effects 
tended to decrease as the genetic variances of 
the SNPs increased 
 

The simple correlations of SNP effects 
from BayesA and BayesB with those from 
BLUP using BayesA and BayesB parameters 
were 0.99 and 0.91 respectively. 
Corresponding rank correlations were 0.99 and 
0.96. The regressions of SNP effects from 
BayesA and BayesB on BLUP were 0.790 and 
0.413 respectively. Thus the predictive ability 
of BLUP using parameters from BayesB was 
rather poor. The correlation of BLUP SNP 
effects with those from BayesA and BayesB 
was 0.30. 
 
 
  

GMACE 
 
The percentage change in the GMACE 
evaluations of the two bulls in the importing 
country at the different genetic correlations 
was computed relative to GMACE evaluations 
for these bulls assuming a genetic correlation 
of unity between both countries. For bull A 
with a parent average of about one standard 
deviation below country mean, the decrease in 
the GMACE proof  in the importing country 
were 3, 15  and 63% when the genetic 
correlation was 0.95, 0.85 and 0.65 
respectively. However for bull B with half 
standard deviation above the country mean, the 
GMACE proof increased by 6% when the 
genetic correlation was either 0.95 or 0.85 but 
decreased by  2% when the correlation was 
0.65. The increase in GMACE evaluations was 
due to the fact that the contributions from the 
high parent average increased as the genetic 
correlation decreased from unity while the 
contributions from Mendelian sampling 
decreased.  It seems the PA could have some 
large influence in the GMACE of foreign bulls 
in importing country for bulls with only GEBV 
in exporting country. 
 

In general, GMACE resulted in a decrease 
on the relative weights on PA as the proportion 
of common genotyped bulls in common was 
above 30% (Table 2) and it seems to be more 
so for the country with the higher heritability. 
 
 
Conclusion 
 
SNP deviations and weights were higher with 
the Bayesian methods compared with BLUP. It 
seems that Bayesian methods were able to 
more differentially and appropriately weight 
computed SNP deviations by estimating 
different variances for the SNPs. The 
correlation between SNP effects from BayesA 
and BLUP using BayesA parameters was close 
to unity. The parent average in the importing 
country could have a substantial effect (3 to 
63%) on the GMACE evaluation of bulls in the 
importing country when bulls have only 
GEBVs in the exporting country.  GMACE 
resulted in less emphasis on parent average 
relative to MACE when proportion of 
genotyped bulls in common was above 30%. 
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Table 1.   Mean (standard deviations in brackets), minimum (Min) and maximum (Max) of SNP 
effects (kg, SNP), genetic variances (kg2, Gvar), SNP deviations (kg, yd) and weights (WTs)  for 
various models.  
 BayesA BayesB BLUP 
 Mean  Min  Max Mean Min Max Mean Min Max 
SNP -0.006 

(0.29) 
-56.6 2.62 -0.019 

(1.18) 
-204 11.2 0.007 

0.10) 
-0.688 0.517 

Gvar 0.695 
(5.32) 

0.629 1092.5 1.105 
(7.44) 

0.882 1175.8 1.333   

SYD 20.53 
(1686) 

-38045 11076 -359.52 
(5415) 

-171596 36170 92.2 
(1240) 

-7818 6309 

WTs 0.515 
(0.022) 

0.478 0.987 0.876 
(0.017) 

0.837 0.999 0.108 
(0.061) 

0.0004 0.219 

 
 
Table 2. Relative weight on parent average (PA) and de-regressed proof corrected for country effects 
(CD) in MACE and GMACE at different proportions of genotyped bulls in common (c12). 
 
Country    MACE            GMACE 
                    c12 

    0.30 0.70 0.95 
      
      1 

 PA 0.38 0.35 0.25 0.08 
 CD 0.62 0.65 0.75 0.92 

                                       
      2 

 PA 0.46 0.45 0.40 0.31 
 CD 0.53 0.54 0.60 0.69 

 


