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Abstract 

 
New SNP chips for the bovine with densities of 500,000 to 800,000 SNP markers will become 
available for genomic evaluation of dairy cattle within the next 2 years. The aim of this study is 
evaluate the impact of increased SNP marker density on the accuracy of genomic evaluation using a 
simulation. This study has found that if the underlying genetic structure is defined by a large number 
of small QTL then large training data set sizes and precise phenotypic measures will be required to 
realise improvements in accuarcy from increasing SNP density.  
 
 
Introduction 
 
Genomic selection utilises breeding values that 
are predicted from a large number of estimated 
single nucleotide polymorphism (SNP) marker 
effects that cover the whole genome. The SNP 
marker information can be used to identify 
animals that have inherited chromosome 
segments of high genetic merit. Genomic 
selection allows juvenile animals to be selected 
with greater accuracy compared to traditional 
genetic evalution systems. The higher accuracy 
of selection can lead to increased genetic gain 
from the incorporation of genomic information 
in to dairy cattle breeding programs. Many 
dairy cattle populations contain animals, 
usually elite males and females, that have been 
genotyped using the Illumina BovineSNP50 
BeadChip or similar technologies. The current 
SNP chip technology provides a density of 40-
50,000 SNP markers for genomic analysis. A 
number of countries have incorporated the 
genomic information in their national genetic 
evaluations. The incorporation of genomic 
information has increased the accuracy of 
young bulls from a traditional parent average 
value of 35% to values greater than 50%. This 
increase in the young bull accuracy has 
resulted in increased use of young bulls to 
breed cows and changes to dairy cattle 
breeding scheme designs. 

 
New SNP chips for the bovine with 

densities of 500,000 to 800,000 SNP markers 
are becoming available. It is likely that higher 
density SNP chip or genome sequence data 

will become available for the genomic 
evaluation of dairy cattle within the next 2 
years. Analysis methods currently used for 
genomic evaluations in dairy cattle are largely 
based on ridge regression (RR) (VanRaden, 
2008) which uses all the SNP markers. The 
success of this method in analysing dairy cattle 
data that uses all SNPs compared to methods 
that assume only a few SNPs are useful 
(Meuwissen et al., 2001) raises questions 
about the underlying genetic structure. The 
success of ridge regression suggests that there 
may be a large number of smaller QTL. In this 
study the genetic structure simulated had a 
greater number of QTL with smaller effects 
compared to the studies reported by 
Meuwissen et al., 2001 and Meuwissen and 
Goddard 2010. 

 
The aim of this study is evaluate the 

impact of increased SNP marker density on the 
accuracy of genomic evaluation a simulation 
that is representative of the LIC breeding 
scheme in New Zealand. Also the limiting 
factors in terms of data and methods of 
analysis were determined. 
 
 
Methods 
 
Simulation 
 
The SNP and QTL data were simulated to 
represent a dairy cattle breeding scheme using 
a simulation method similar to that used by 
Habier et al. (2007). A founder population was 
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simulated over a period of 1000 generations at 
an effective population size of 100. The 
genome consisted of 10 chromosomes, each of 
length 100 cM. Initially marker loci were 
equally spaced across the genome. The initial 
alleles were sampled from a Bernoulli 
distribution with probability 0.5. Starting from 
a segregating population, mutation rates were 
set at 0.5×10−3 for markers and where 
mutations switched to the other allele. A total 
of 1500 QTL were selected at random from 
among SNPs with minor allele frequency ≥ 5% 
leaving 1,070,562 SNP markers. Real pedigree 
data was based on the 5,769 bulls born up to 
2008 and some bull dams that were genotyped 
in the LIC genomic selection programme. 
There was a total of 24,017 individuals in the 
pedigree, inclusive of the ancestors of 
genotyped individuals. The simulated founder 
population formed the base population for a 
gene dropping process through the pedigree. 
The QTL effect at each polymorphic locus was 
sampled from a gamma distribution with shape 
parameter 0.4. A true breeding value (BV) was 
generated for each individual based on the 
QTL effects and an initial phenotype was then 
obtained by adding in random error with the 
same variance such that heritability was 0.5. 
Subsequent phenotypes were simulated with 
heritabilities of 0.75 and 0.95. Higher 
heritabilities were achieved by estimating new 
random errors by reducing the random error 
variance. The test data comprised the 970 
genotyped bulls born in 2007 and 2008. Lower 
density SNP data sets were created by 
randomly subsampling the full SNP data by 
chromosome. A set of 15,000 genotyped 
progeny test daughters were simulated with the 
sire chromosomes being randomly sampled 
from the sires born in 2006 and the dam 
chromosomes from the base population.  
 
 
Statistical Analyses 
 
Three methods of statistical analysis were 
undertaken on simulated data, RR (BLUP), 
Fast Bayes B (Meuwissen et al., 2009), and 
Elastic Net (Zou and Hastie, 2005). The Elastic 
Net (EN) method utilises the Lasso and ridge 
penalty to select variables. The EN has the 
interpretation as a stabilised version of the 
lasso.  The   EN   has  been  shown  to  provide 

results that are comparable to Bayes B and RR 
for genomic selection using simulated and real 
data (Harris and Johnson, 2010). A multistep 
EN alogrithm was applied in this study. The 
first step was to select SNPs chromosome by 
chromosome. The second step was to analyse 
the selected SNPs aggregated across 
chromosomes. The multistep method has two 
advantages over a single-step analysis. First, 
the initial SNP selection is unaffected by 
correlations among SNPs on different 
chromosomes. Second, the multistep method is 
computat-ionally efficient compared to a single 
step analysis by factor of 3-4 times. 

 
 

Results and Discussion 
 
The major advantage of increasing SNP 
density in genomic selection is the 
improvement in linkage disequilibrium (LD) 
between flanking SNP markers and the QTL. 
Higher levels of LD provide a better QTL 
signal across and within families. Box plots of 
the LD between the 10 SNP markers flanking 
the QTL for 1000k and 20k SNP densities are 
provided in Figure 1. The greater the SNP 
density the higher the mean LD and the lower 
the range of LD between the QTL and the 
flanking markers. There are two disadvantages 
from increasing SNP density. First, the number 
of the uninformative SNPs in the data 
increases and linear functions of the 
uninformative SNPs may predict random error 
in the training phenotypes. This will reduce the 
accuracy of prediction observed in the test 
data. Second, the level of collinearity between 
uninformative and informative SNPs increases. 
The increasing collinearity can attribute the 
true QTL effect to a large number of correlated 
SNPs, thereby reducing the effectiveness of the 
prediction in future generations. 
 

The correlations between the true and 
predicted phenotype in the test data for 
increasing SNP densities are given Table 1. 
There is little difference among the accuracies 
from the different analysis methods. The 
maximum correlation achievable in the test 
data is 0.71 when the heritability of the 
phenotype is 0.50. Only very small marginal 
changes in accuracy are seen, 0.63 to 0.66, as 
the SNP density increases from 20k to 1000k. 
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Table 1. The correlations between the true and 
predicted phenotype from the test data with 
increasing SNP density. 
 
 SNP Density 
Analysis 20k 100k 500k 1000k 
Elastic Net 0.64

3 
0.64

5 
0.64

6 
0.651 

RR1 0.65
0 

0.65
3 

0.65
3 

0.655 

FBB2 0.63
3 

0.65
2 

0.65
3 

0.652 

1Random Regression, 2Fast Bayes B 
 

To understand the drivers for the lack of 
improvement in the accuracy of prediction 
from increasing SNP density, three areas were 
investigated, the precision of phenotype, 
training data power and inclusion of the QTL 
SNPs in to the SNP data sets.  

 
Table 2 provides the correlations between 

the true and predicted phenotype in the test 
data for three levels of phenotype precision 
and four SNP densities from an EN analysis. 
Increasing the phenotype precision improves 
the accuracy of prediction across all the SNP  
 
Table 2. The correlations between the true and 
predicted phenotype from the test data for 
three phenotype heritabilities with increasing 
SNP density. 
 
Phenotype 
h2 

SNP Density 
20k 100k 500k 1000k 

0.50 0.64
3 

0.64
5 

0.64
6 

0.651 

0.75 0.74
9 

0.74
7 

0.74
7 

0.751 

0.95 0.88
9 

0.89
5 

0.89
0 

0.897 

 
densities. However, there is little improvement 
in accuracy as the SNP density increases for a 
given level of phenotype precision. To 
determine whether the training data had 
sufficient statistical power to resolve higher 
SNP densities two analyses were undertaken. 
First the SNP density was further reduced 
below 20k. Second, the training data was 
increased by the addition of 15,000 progeny 
test daughters. The results from reducing the 
SNP density are given in Table 3 and results 

from increasing the training data given in 
Table 4. 
 

Increasing the SNP density progressively 
from 1k to 20k shows an asymptotic increase 
in the correlations between the true and 
predicted phenotype. Similar trends were also 
observed at higher levels of phenotype 
precision. It appears from this analysis that the 
statistical power of training data with 4799 
sires is at maximum around 20k SNP density 
in this simulation. A density of 20k in this 
simulation equates to 65k for the bovine 
genome. The addition of 15,000 extra 
genotypes to the training data set improved the 
accuracy of prediction in the test data. The 
additional genotypes also appear to move the 
accuracy asymptote from 20k to approximately 
100k (300k on the bovine genome). 

 
Figure 1. Box plot of average linkage 
disequilibuim r2 for the 10 markers flanking 
the 1500 QTL. 
 

To investigate the impact of including 
caustive mutations on the SNP chip, the QTL 
SNPs were included in SNP data. Table 5 
provides the results from adding the QTL 
SNPs to the 20k SNP data for the three levels 
of phenotype precision. The correlations 
between the true and predicted phenotype 
increase with addition of the QTL SNPs. 
Further analysis of the addition of QTL SNPs 
showed that there was an observed interaction 
between the improvement from the addition of 
QTL SNPs, SNP density and phenotypic 
precision. As the SNP density increases and 
the phenotypic precision  decreases  the  
effectiveness  of   the  addition  of  QTL  SNPs  
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decreases. The signal from the QTL SNPs 
appears to be reduced by increased 
multicollinearity amongst SNPs and increased 
noise from the errors in the phenotypes. 
 
Table 3. The correlations between the true and 
predicted phenotype from the test data with 
decreasing SNP density. 
 
 SNP Density 
Analysis 1k 5k 10k 20k 
Elastic Net 0.572 0.623 0.636 0.643 
RR1 0.598 0.625 0.648 0.650 
FBB2 0.512 0.576 0.616 0.633 
1Random Regression, 2Fast Bayes B 
 
Table 4. The correlations between the true and 
predicted phenotype from the test data with 
additional training data genotypes  

Training 
data 

SNP Density 
20k 50k 100k 

4799 Sires 0.643 0.644 0.645 
14799+15k 0.661 0.678 0.693 
14799 Sires + 15k progeny test daughters 
 
 
Table 5. The correlations between the true and 
predicted phenotype from the test data when 
the QTL SNPs are added to the 20k SNP data. 

SNP 
Density 

Phenotype h2 
0.50 0.75 0.95 

20k 0.643 0.749 0.889 
20k + QTL 0.666 0.811 0.937 
 

The results in this study differ from those 
reported by Meuwissen and Goddard (2010) 
where increasing the SNP density improved 
the prediction accuracy in their simulations. 
The major difference between this study and 
the study by Meuwissen and Goddard’s study 
is the simulation of the underlying genetic 
structure. In this study the number of QTL 
simulated was greater and the magnitude of the 
individual QTL effects smaller. Meuwissen 
and Goddard (2010) have shown that in 
situations where there a fewer QTL, 

predictions from methods such as Bayes B 
provide increased accuracy as the SNP density 
increases for modest training population size. 

 
The increased accuracy of genomic 

selection prediction from increasing SNP 
density will be senstive to the underlying 
genetic structure. In situations where the 
underlying genetic structure is defined by a 
larger numbers of small QTL, large training 
data set sizes and precise phenotypic measures 
will be required to realise improvements in 
accuarcy from increasing SNP density. 
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