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Abstract 
 
This study assessed the impact of alternative parameterizations for the estimation of variance 
components on practical predictions of breeding values with MACE. Interbull MACE Holstein 
evaluations for somatic cell count (April 2009) and protein yield (August 2007) were considered. The 
MACE model was expressed in terms of a random regression model, which facilitates exploitation of 
principal component and factor analytic approaches. Both methods allow a reduction of the number of 
parameters to be estimated and benefit from the more parsimonious variance structure. Genetic 
parameters from different approaches were very similar, when the optimal fit was used. Over-fitting 
did not affect the estimates, but increased estimation time, whereas fitting too few parameters affected 
bull rankings in different countries. 
 
Introduction 
 
Principal component (PC) and factor analytic 
(FA) approaches to model covariance matrices  
facilitate a reduction in the number of  
parameters to be estimated and are thus an 
attractive proposition to ease the computational 
burden of variance component estimation for 
multiple-trait across country evaluation 
(MACE, e.g., Mäntysaari, 2004, Leclerc et al., 
2005). Both methods decompose genetic 
covariance matrices into the pertaining 
matrices of eigen-values and -vectors, i.e. 
principal components. For highly correlated 
traits, some principal components explain 
virtually no genetic variation (i.e. have 
eigenvalues close to zero) and can be omitted, 
so that only the leading principal components 
are fitted in the model.  
 
 The bottom-up PC approach, a sequential 
PC method proposed by Mäntysaari (2004), is 
designed for large-scale, over-parameterized 
models, but has so far been tested on a 
simulated data set only. The direct PC and FA 
approaches, suggested by Kirkpatrick and 
Meyer (2004), were also designed for a large, 
multi-trait framework and showed their 
potential in large beef cattle data sets (e.g., 
Meyer, 2007a). The aim of this study was to 
assess the usefulness of the bottom-up PC, 
direct PC and FA approaches for MACE. 

Material and Methods 
 
Random regression MACE 
 
The random regression (RR) MACE model for 
sire i is expressed as follows: 
 

iiiii εVνZbXy ++= ,          (1) 

where yi is the vector of ni de-regressed, 
national breeding values for bull i, b is the 
vector of t country effects, iν  is the vector of t 
regression coefficients for bull i, and iε  is the 
corresponding vector of ni residuals. Xi and Zi 
are incidence matrices assigning observations 
to the respective effects. G, the tt VCV 
matrix of sire breeding values ui, is 
decomposed into the matrices of eigenvalues 
(D) and eigenvectors (V); TVDVG = with 

)( iVar νD = . Further, the residual variance is 
)/()( ijjjji EDCgdiagVar λ=ε  with jjg the 

sire variance for country j, 22 /)4( jjj hh−=λ  

with 2
jh  the heritability in country j and 

ijEDC the effective daughter contribution for 
bull i in country j. In this study, genetic groups 
were not included for the variance component 
estimations, but they were included for the 
predictions of the breeding values. 
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PC approaches 
 
The direct PC approach fits the leading 
principal components directly, requiring 
multiple analyses to determine the appropriate 
rank (Kirkpatrick and Meyer, 2004). The 
bottom-up PC approach, in turn, starts analysis 
with a sub-set of countries and adds new 
countries sequentially, assessing in each step 
whether or not a new country increases the 
rank (Tyrisevä et al., 2009). Now, 

T
1111 VDVG = , where D1 contains the r 

largest eigenvalues and V1 the r corresponding 
eigenvectors, with r < t.   
 
 
Factor analytic approach 
 
The FA approach is closely related to the PC 
approach, but it divides additive genetic effects 
and their variances into a common and a trait 
specific part. Now, the RR MACE model is re-
parameterized as follows: 
 

iiiiii ετ δ(LZbXy +++= ) ,                   (2) 
 
where iδ  is the vector of common factors, 

with Iδ =)( iVar , and iτ , the vector of 
country specific effects, with 

{ }iji diagVar σσ 2)( == Fτ . L denotes the 
matrix of factor loadings. The sire effects are 
now expressed as: iii τLδu += , and the 

VCV matrix as: FLIL G += Τ . 
 
 The resulting G in the FA model is of full 
rank, provided that none of the trait-specific 
variances is zero. However, the model is very 
parsimonious since the matrix of factor 
loadings can be of reduced rank as in the PC 
approach. Usually, the number of common 
factors is notably smaller than the number of 
PCs in the reduced rank model. 
 
 
Data sets 
 
Somatic cell count (SCC) from April 2009 and 
protein yield from August 2007 MACE 
Interbull Holstein evaluations were used as test 
data sets. The SCC data comprised 100 551 
bulls from 23 countries and that for protein 
yield 103 676 bulls from 25 countries. Number 

of bulls per country ranged from less than 200 
to more than 20 000 for both traits.  The 
majority of bulls had daughters in one country 
only. The number of common bulls – defined 
as bulls with daughters in a pair of countries 
without restrictions on the country of origin – 
varied from one to 1 526 for SCC with a mean 
of 240, and from zero to 1 194 for protein 
yield with a mean of 158. A sire model with a 
sire-maternal grandsire pedigree was fitted 
with 107 728 animals for SCC and 106 003 
animals for protein yield.  

  
 In addition, later data sets were analysed for 
both traits, to test the estimation time of 
variance components under the direct PC 
approach and with the earlier calculated 
parameters as starting values. For SCC, April 
2010 evaluation data with 24 countries, and for 
protein yield, April 2009 evaluation data with 
26 countries were tested. Now, the number of 
bulls for SCC was 110 049 with 114 290 bulls 
in the pedigree and for protein yield 109 845 
bulls with 115 049 bulls in the pedigree. 
 
 
Models 
 
For both traits, ranks used in the direct PC 
analyses were estimated using the bottom-up 
PC approach (Tyrisevä et al., 2009). For SCC, 
the appropriate rank was 15 (PC15) and that 
for protein yield was 20 (PC20). Further, for 
both traits, additional analyses under the 
models fitting too low or too high a rank were 
performed for comparison: rank 10 (PC10) and 
rank 23 (PC23) for SCC and rank 15 (PC15) 
and rank 25 (PC25) for protein yield.   
 

The correct fit in the FA analyses was 
determined following the suggestions by 
Meyer and Kirkpatrick (2008). The appropriate 
fits were 7 (FA7) for SCC and 9 (FA9) for 
protein yield.  

 
 While estimating new variance components 
for the updated data sets, input parameters 
were those obtained from the 2009 analysis for 
SCC and from the 2007 analysis for protein 
yield. The starting value for a new country was 
defined as the average variance of the 
countries already included in the model and 
covariances for a new country were derived 
from an average correlation of the countries 
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already in the model. Ranks used were the 
same as in the previous analyses. 

 
Variance components were estimated by 

restricted maximum likelihood, using an 
average information algorithm as implemented 
in WOMBAT (Meyer, 2007b). The numbers of 
parameters for the SCC 2009 were: 186, 241, 
277 and 164 for PC10, PC15, PC23 and FA7, 
respectively. The numbers of parameters for 
the protein yield 2007 were: 271, 311, 326 and 
215 for PC15, PC20, PC25 and FA9, 
respectively. 

 
 
Estimated breeding values 
 
The prediction of breeding values in (1) and 
(2) followed Tyrisevä et al. (2008). The 
correlations of the estimated breeding values 
(EBVs) between different approaches under 
the optimal fit were studied, as well as the 
correlations between the direct PC under the 
optimal and too low a rank. Further, 
correlations between EBVs from the direct PC 
analysis under the optimal rank and EBVs 
from Interbull are presented for comparison. 
The same comparisons were performed in four 
subgroups defined as: A) bulls used only in 
their own country, B) bulls used in their own 
country and abroad, C) bulls used only abroad, 
and D) imported bulls.  
 

Breeding values were obtained using a 
preconditioned conjugated gradient iteration 
on data algorithm as implemented in MiX99 
(Vuori et al., 2006). 
 
 
Results and Discussion 
 
Genetic correlations 
 
The estimates of genetic correlations from the 
PC and FA approaches under the optimal fit 
were almost identical, except for some 
differences in minimum values (Table 1). 
Further, the non-post-processed Interbull 
estimates were in a good accordance with 
them.   

 
There was a notable difference in the 

general level of genetic correlations between 
SCC  and  protein  yield.  Those for the protein  

yield were on a lower level (mean values: SCC 
0.88, protein yield 0.69) and some of the 
correlations were extremely low (Table 1). The 
low genetic correlations of protein yield were 
associated with low number of records and 
weak ties with the other countries. Further, 
Jakobsen et al. (2009) observed that different 
trait definitions and national genetic evaluation 
models, as well as genotype by environment 
interactions cause low to moderate genetic 
correlations between countries. Currently, 
Interbull performs a post-processing step 
(Interbull, 2010) that raises the genetic 
correlations to a level that corresponds to the 
common knowledge of their level. Thus, the 
difference of the post-processed genetic 
correlations with the estimates from the other 
approaches for protein yield is relatively large 
(Table 1).  

Variance component analyses for SCC 
2009 required 5, 3, 16, 3, 7 and >30 days for 
FA6, FA7, FA8, PC10, PC15 and PC23, 
respectively. Variance component analyses for 
protein yield 2007 took 14.5, 3.5, 31.5, 21.5, 5 
and 16.5 days for FA7, FA9, FA11, PC15, 
PC20

 

, and PC25, respectively. Estimation 
times of the optimal fits are underlined. It 
seems clear that the PC and FA analyses had 
notable problems to find the maximum, if the 
fit was selected wrongly. Updating the 
variance components for SCC, computing time 
was reduced from 7 to 5 days (Table 2) and 
remained the same for protein yield (Table 3).  

 
EBVs 
 
EBVs from the PC and FA approaches under 
the optimal fit were identical or almost 
identical, with few exceptions (Table 4). 
Further, correlations among EBVs from the 
full and optimal rank models were unity 
(Tyrisevä et al., 2010; in preparation).   EBV 
correlations from different approaches were in 
places lower than 0.99 for countries with few 
records and low number of common bulls with 
the other countries.  As expected, the 
differences were largest in the subgroup C 
(bulls used only abroad), in which the 
prediction of the breeding values was totally 
based on the links through the pedigree (Table 
4).  
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 EBVs started to differ, when the predictions 
between the optimal and too low a fit were 
compared (Table 4). Based on the current 
study, the estimation of the variance 
components is more sensitive to the use of 
correct fit than prediction of the EBVs 
(Tyrisevä et al., 2010; in preparation). Further, 
the Interbull’s post-processing step of the 
parameters created larger differences in the 
EBV correlations than too strong a rank 
reduction (Table 4).  
 

Times required for solving the MACE 
system were at most 6 min for SCC and 7 min 
for protein yield, both with Interbull 
predictions. Solving times for the models 
under the optimal fit were at their shortest 4 
min for SCC, and 5 min for protein yield.  
 
 
Recommendations 
 
The study shows that the principal component 
and factor analytic approaches are useful in 
variance component estimation and breeding 
value prediction for the international sire 
evaluation. Both methods facilitate more 
parsimonious models that are useful in MACE, 
where over-parameterized models and the 
problems associated with them are common. 
Solving time was clearly shortest for the 
models fitting optimal number of parameters. 
Further, no data sub-setting was needed for 
such models.    
 

Using too low a fit affects the accuracy of 
variance component estimation, as well as the 
accuracy of breeding value predictions. Based 
on our results, it is, however, unlikely that 
minor deviations from the correct fit have 
practical influences. Over-parameterization 
had no influence on the accuracy, but it 
notably increased the estimation time.  
 

The bottom-up PC approach can be utilized 
to determine the correct rank and the direct PC 
approach for routine analyses. Ranks must be 
re-estimated only when major changes occur in 
the data sets. Further, there is no need to start 
the bottom-up PC process from the beginning, 
but utilize the last parameters and rank as input 
for a new analysis (Table 2, 3). Currently, 
there is no such an option for the FA approach.  
  

This study clearly reveals some problems 
associated with disconnectedness and 
variability of data sets. We therefore 
recommend that participating countries pay 
attention to the quality of their national genetic 
evaluation models. Estimation difficulties 
associated with the quality of the data causes 
low genetic correlations, lower accuracy of the 
breeding value predictions and longer solving 
time of the bottom-up PC (Table 3). The 
bottom-up PC run for protein yield clearly 
demonstrated this. The majority of the first 15 
countries introduced in the analysis were well-
connected, large countries. They contributed 
88% of the total data, but the computing time 
was less than 9% of the total time used. On the 
other hand, the computing time for the bottom-
up PC for SCC was almost the same as for the 
direct PC (Table 2), hinting that there were no 
large problems embedded in the data sets with 
this trait.    
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Table 1. Descriptive statistics of estimates of genetic correlations from different approaches. 

Approach Min 1st  

 
Median Mean 3rd  Max 

quartile quartile 
Somatic cell count 2009       
Direct PC, rank 15 0.62 0.84 0.88 0.87 0.92 0.97 
Bottom-up PC, rank15 0.65 0.85 0.89 0.88 0.92 0.98 
Factor analysis, fit 7 0.63 0.84 0.89 0.87 0.92 0.97 
Non-post-processed Interbull 0.61 0.86 0.90 0.89 0.93 0.98 
Post-processed Interbull 0.74 0.86 0.90 0.89 0.93 0.97 
Protein yield 2007       
Direct PC, rank 20 0.08 0.56 0.71 0.69 0.82 0.94 
Bottom-up PC, rank 20 0.05 0.57 0.71 0.68 0.81 0.94 
Factor analysis, fit 9 0.13 0.57 0.71 0.69 0.82 0.94 
Non-post-processed Interbull 0.02 0.59 0.74 0.70 0.83 0.94 
Post-processed Interbull 0.75 0.79 0.85 0.84 0.87 0.93 
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Table 2. Variance component estimation times of the principal component approaches for somatic cell 
count. 

Bottom-up 
 

No of  

 

No of 
 

 

Time, 

 

No of 
 

 

Rank Time, 

 

Total 
 

 

SCC 2009 countries country 
 

d:hr:min rank reduction 

 

 d:hr:min d:hr:min 
 7 25 0:02:45 3 + 2 + 4 5 0:00:28 0:03:13 
 8 14 0:00:56 3 6 0:00:09 0:01:05 
 9 13 0:01:29 5 7 0:00:22 0:01:51 
 10 6 0:01:19 5 8 0:00:37 0:01:56 
 11 6 0:01:58 5 9 0:00:56 0:02:54 
 12 3 0:01:50 21 9 0:05:05 0:06:55 
 13 11 0:03:59 5 10 0:01:21 0:05:20 
 14 26 0:12:18 8 11 0:02:49 0:15:07 
 15 22 0:13:43 6 11 0:03:11 0:16:54 
 16 8 0:05:26 4 11 0:02:21 0:07:47 
 17 9 0:06:01 4 11 0:02:17 0:08:18 
 18 10 0:06:31 8 12 0:03:58 0:10:29 
 19 12 0:10:09 6 12 0:04:04 0:14:13 
 20 11 0:11:20 5 13 0:03:51 0:15:11 
 21 13 0:14:34 7 14 0:06:25 0:20:59 
 22 15 1:01:54 6 14 0:07:39 1:09:33 
 23 9 0:13:13 7 15 0:07:59 0:21:12 
       7:18:57 
        
Direct PC        
SCC 2009 23   86 15  7:00:02 
SCC 2010 24   70 15  5:01:57 
 

 

Table 3. Variance component estimation times of the principal component approaches for protein 
yield. 

Bottom-up PC No of No of iterations, Time, No of iterations, Rank Time, Total time, 
Protein yield 2007 countries country addition d:hr:min rank reduction 

 

 d:hr:min d:hr:min 
 7 5 0.00:46 4 7 0:00:26 0:01:12 
 8 9 0:01:48 4 8 0:00:41 0:02:29 
 9 8 0:02:21 5 9 0:01:12 0:03:33 
 10 8 0.03:24 6 10 0:02:02 0:05:26 
 11 11 0:06:05 5 11 0:02:25 0:08:30 
 12 14 0:10:24 6 11 0:03:49 0:14:13 
 13 13 0:10:53 6 12 0:03:50 0:14:43 
 14 13 0:14:09 6 13 0:05:00 0:19:09 
 15 12 0:16:34 5 14 0:05:28 0:22:02 
 16 77 6:03:56 8 15 0:11:04 6:15:00 
 17 12 1:06:04 6 16 0:10:40 1:16:44 
 18 17 2:10:31 13 16 1:03:47 3:14:18 
 19 12 1:13:49 6 17 0:13:00 2:02:49 
 20 21 3:14:19 12 17 1:07:15 4:21:34 
 21 14 1:22:37 5 18 0:13:08 2:11:45 
 22 28 5:11:05 7 19 0:22:04 6:09:09 
 23 15 3:14.23 11 19 1:15:25 5:04:48 
 24 15 3:17:11 6 20 1:24:00 4:17:35 
 25 14 4:05:09 12 20 2:04:03 6:09:12 
       46:23:11 
Direct PC        
Protein yield 2007 25   24 20  5:13:27 
Protein yield 2009 26   42 20  5:16:46 
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Table 4. Correlations between estimated breeding values from different approaches and from optimal 
and too low a rank under the direct PC approach in the subgroup C, i.e. bulls used only abroad. For 
Interbull predictions, post-processed parameters were used as starting values.  

Country 
Somatic cell count 2009 Protein yield 2007 

PC15a PC15 PC15 PC10 PC20 PC20 PC20 PC15 
BUPb FA7c INTBd PC15 BUP FA9 INTB PC20 

Canada 0.999 1.000 0.999 0.998 1.000 1.000 0.998 0.999 
Germany 1.000 1.000 0.999 0.999 1.000 1.000 0.997 1.000 
Denmark, Finland, Sweden 0.999 1.000 0.999 0.998 1.000 1.000 0.998 1.000 
France 1.000 1.000 0.999 0.999 1.000 1.000 0.997 1.000 
Italy 1.000 1.000 1.000 0.999 1.000 1.000 0.998 1.000 
The Netherlands 1.000 1.000 0.999 0.999 1.000 1.000 0.998 1.000 
USA 0.999 1.000 0.999 0.999 1.000 1.000 0.996 1.000 
Switzerland 0.994 0.999 0.998 0.995 0.997 1.000 0.997 0.999 
Great Britain 1.000 1.000 0.999 0.999 1.000 1.000 0.997 1.000 
New-Zealand 0.999 0.999 0.993 0.997 0.997 0.999 0.984 0.995 
Australia 0.999 0.999 0.998 0.997 1.000 1.000 0.995 1.000 
Belgium 0.996 0.999 0.997 0.997 0.996 1.000 0.994 0.997 
Ireland 0.999 0.999 0.998 0.999 1.000 0.999 0.993 0.997 
Spain 0.999 1.000 0.999 0.999 1.000 1.000 0.996 1.000 
Czech Republic 0.999 0.998 0.998 0.994 0.999 0.999 0.981 0.993 
Slovenia -e - - - 0.978 0.979 0.883 0.994 
Estonia 0.985 0.992 0.984 0.990 0.999 0.997 0.986 0.995 
Israel 0.980 0.989 0.984 0.990 0.988 0.993 0.975 0.985 
Swiss Red Holstein 0.995 0.996 0.994 0.994 0.998 0.999 0.994 0.998 
French Red Holstein 0.979 0.996 0.994 0.997 0.972 0.988 0.987 0.998 
Hungary 0.998 0.999 0.999 0.995 1.000 1.000 0.996 0.999 
Poland - - - - 1.000 0.999 0.987 0.998 
South Africa 0.997 0.999 0.996 0.995 0.997 0.998 0.956 0.992 
Japan 0.998 0.997 0.992 0.998 1.000 1.000 0.997 0.999 
Latvia - - - - 0.993 0.977 0.918 0.982 
Danish Red Holstein 0.993 0.994 0.988 0.998 - - - - 

  aDirect PC, rank 15 
  bParameters from the bottom-up PC analysis 
  cFactor analysis, fit 7 
  dInterbull 
  eCountry was not participated in the evaluation 


