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Abstract 
In this study, we have demonstrated that using dry matter intake (DMI) phenotypes from multiple 
countries increases the accuracy of genomic breeding values for this important trait, provided a multi-
trait approach is used. Data from Australia, Canada, Denmark, Germany, Ireland, the Netherlands, 
New Zealand, United Kingdom and two institutions in the United States were combined to estimate 
the accuracy of genomic prediction for DMI multi-trait models. The average accuracies was 0.44, and 
ranged from 0.37 (Denmark) to 0.54 (the Netherlands). Enlarging the combined dataset with unique 
phenotypes does increase the accuracy of the genomic prediction for DMI. This stimulates further 
international collaboration.  
 
1. Introduction 
 
Feed cost is the single-largest expense of dairy 
production (Vallimont et al., 2011) and has 
increased substantially over the last few years 
(Garcia, 2009). Although it is a crucial factor 
in the profitability of the dairy industry, little 
attention has been paid to improve feed 
efficiency through direct selection (Linn, 2006; 
Zamani et al., 2008). This is mainly due to the 
difficulties and costs associated with individual 
feed intake measurements (Kelly et al., 2010). 
 

Therefore, for dry matter intake (DMI) and 
other difficult to measure traits, there has been 
recent interest in combining data from 
international research populations for genetic 
analysis (Banos et al., 2012; de Haas et al., 
2012; Veerkamp et al., 2012; Berry et al., 
2014). Reasons why genotypes and phenotypes 
from different research organisations  are  
combined include adding statistical power to 
genome wide association studies and/or trying 
to improve the accuracy of genomic prediction. 
 
 

Challenges when combining phenotypes 
from several countries include genotype by 
environment interactions and differences in 
trait definitions. A multi-trait model can handle 
traits that are measured in different 
environments as separate traits, and therefore 
treat both the genotype by environment 
interaction and differences in trait definitions 
properly. Genomic predictions for multiple 
traits are straightforward if a genomic BLUP 
(G-BLUP) methodology is used, as also 
demonstrated by De Haas et al. (2012). The 
objective of this study was to estimate the 
accuracy of genomic prediction for DMI, when 
analysed in a multiple-trait analysis, using the 
largest existing international database, with 
individual DMI records from Europe, North 
America and Australasia.  
 

2. Material and Methods 
 
Available data. Data on individual daily feed 
intake of Holstein-Friesian cows and heifers 
were  available from nine countries in  Europe,  
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North America and Australasia, with some 
countries providing data from more than one 
population of animals. Only data from parity 
one to five were retained for inclusion in the 
analysis; feed intake data from growing heifers 
(<2 years of age) in Australia and New 
Zealand were also available and retained for 
the analysis. Data on feed intake was 
transformed into DMI by multiplying wet feed 
intake by the respective dry matter content of 
that particular diet for the purposes of analysis. 
A more detailed description of the merging of 
the data sources and variance components 
across the different herds is given by Berry et 
al. (2014). 
 

With this collaborative effort between 
research organizations in Australia (AUS), 
Canada (CAN), Denmark (DNK), Germany 
(GER), Ireland (IRL), the Netherlands (NLD), 
New Zealand (NZL), United Kingdom (UK) 
and Iowa and Wisconsin in United States of 
America (IOWA and WISC, respectively), 
resources were available on 233,189 feed 
intake records from 12,425 parities on 8,737 
cows and heifers, of which 1,784 of them were 
nulliparous (Berry et al., 2014). 
 
Phenotype. Fitted values for DMI per animal 
on day 70 in parity 2, predicted from estimated 
quadratic DMI curve for each animal by 5 
parities was used as phenotype. Dry matter 
intake at 70 days in milk was chosen as the 
phenotype because this was the period when 
the largest number of actual DMI observations 
existed within the dataset and it is also close to 
the critical period of early lactation (Berry et 
al., 2014). 
 
Validation sets. The accuracies of genomic 
predictions of DMI in 10 groups of animals 
(validation populations) were estimated, by 
excluding each of those groups one at a time 
from the reference population. Validation 
populations were subsets of the dataset based 
on progeny groups of sires in the different 
countries. Each validation population had 
animals from all countries. With this approach 
it can be shown if the accuracy of a bull’s 
genomic estimated breeding value (GEBV) can 
be increased by using a multi-country 
reference population.  

 
Figure 1. Number of cows of each country per 
validation set. 

 
Generation of relationship matrix. Single 
nucleotide polymorphism genotypes were 
available on 5,999 animals, of which 5,429 had 
phenotypic information in this study. A total of 
1,888 animals had Illumina high density 
genotype information and 4,111 had genotype 
information from the Illumina Bovine50 
Beadchip. Imputation of Illumina high density 
genotypes for 5,999 animals to 591,213 SNP is 
described in detail by Pryce et al. (2014). 
Monomorphic SNPs as well as SNPs deviating 
from Hardy-Weinberg equilibrium were 
discarded and only autosomal SNPs were 
retained. Following editing, 583,375 SNPs 
remained for the calculation of the genomic 
relationship matrix (VanRaden, 2008; Yang et 
al., 2010). Pedigree information of all animals 
was traced back to the founder population; 
aliases in the pedigree were removed through 
the use of the INTERBULL identification 
cross reference tables and manual correction of 
the pedigree. The computation of the combined 
pedigree and genomic relationship matrix (H-1) 
followed Aguilar et al. (2010) and Christensen 
and Lund (2010), and is for this data described 
in more detail by Berry et al. (2014). The H-1 
matrix consisted of 51,486 identities. 
 
Variance components. Fifty-five bivariate 
analyses were run to estimate all genetic and 
residual (co)variances for weighted average 
DMI at 70 DIM in parity 2 using animal linear 
mixed models in ASReml software (Gilmour 
et al., 2009), using the H-1 matrix. The model 
used was: 
 

YiYj = µ + animal + residual 
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Bending. The variance-covariance matrices for 
the genetic and residual effects were bent to 
make one positive definite matrix out of the 55 
bivariate analyses. This was done with an 
iterative bending process where, in three steps 
the poorly estimated correlations (high s.e.) 
were bent until the smallest eigenvalue 
remained constant, conditional on the more 
accurate estimated correlations.  
 
Accuracies of genomic predictions. The main 
objective of this study was to determine how 
well the genomic breeding values predict the 
true breeding values of individual animals. If 
the true breeding value of individuals were 
known, the accuracy of the genomic breeding 
values would be the correlation between the 
genomic breeding values and the true breeding 
values. In practice, the true breeding values are 
unknown, and the only data available are 
phenotypes, which are made up of the effect of 
the true breeding value and the environmental 
effect. Given this, the accuracy of the genomic 
breeding values has been derived as follows. 
 

For each of the 10 validation sets in the 
dataset, a single validation set was removed 
from the dataset one by one. The SNP effects 
for DMI were calculated in the remaining 
dataset using the G-BLUP analysis in 
MiXBLUP (Mulder et al., 2010). Genomic 
estimated breeding values were obtained for all 
animals from the same analysis for the animals 
in the validation set. For each validation set 
that was removed from the dataset, the GEBV 
were then correlated with a vector of 
phenotypes (phen) of DMI, corrected for the 
fixed effects as described above. This gave 
r(GEBV,phen). To adjust that phenotypes were 
used and not the true breeding values, 
r(GEBV,phen) was divided by h, where h was 
the square root of the estimated heritability of 
DMI in that country.  
 

Correlations were calculated for each of the 
different validation populations between the 
breeding values estimated for all individuals in 
that validation population with an 11-trait 
analysis in MiXBLUP (Mulder et al., 2010). 
These correlations were then averaged across 
validation sets within each country. 

 
 
 

3. Results and Discussion 
 
Genetic parameters. The estimated within 
country heritabilities for the weighted average 
DMI on 70 DIM in parity 2 range from 0.12 to 
0.53 (Table 1). Many of the within country 
heritability estimates were in close proximity 
to each other and are consistent with 
previously published heritabilities for these 
populations (Coffey et al., 2001; Berry et al., 
2007; de Haas et al., 2012; Spurlock et al., 
2012) and elsewhere (Sondergaard et al., 2002; 
Vallimont et al., 2011). 
 
Table 1. Estimated within country 
heritabilities for weighted average of DMI on 
70d in parity 2. 
 Heritability 
Canada 0.21 
Denmark 0.46 
Australian heifers 0.32 
New Zealand heifers 0.24 
Germany 0.17 
Iowa, US 0.53 
Ireland 0.26 
Netherlands 0.38 
United Kingdom 0.26 
Wisconsin, US 0.12 
 
 

Genetic correlations were high between 
some countries (>0.8); e.g., Denmark and 
Germany, and Denmark and the Netherlands 
(Table 2). Whereas other countries show low, 
and even negative correlations amongst each 
other. This was the   case   for   Ireland  and  
New  Zealand.  

 
Some countries had comparatively low 
numbers of DMI records and consequently s.e. 
estimates of many genetic correlations were 
high. The genetic correlations with large s.e. 
may have affected the bending procedure. 
Based on the matrix of bended genetic 
correlations, countries can be grouped together 
(Figure 2). The three groups are: (1) the 
Australian  heifer  data  and  New Zealand plus  
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the Irish cows; (2) the Australian lactating 
data, plus the Dutch, Canadian and UK data; 
and (3) the data collected at both universities 
in US plus Germany and Denmark. 

 
Accuracies of genomic predictions. The 
average accuracy of the genomic prediction 
(r(GEBV,TBV) for the fitted value of DMI on 
70d in parity 2 is 0.44 (0.08). The accuracies 
range from 0.37 to 0.54 (Table 3). This 
accuracy is higher than the accuracy De Haas 
et al. (2012) estimated for a combined dataset 
of Australian, Dutch and UK data (0.35). 
Therefore, enlarging the reference set does 
improve the accuracy of genomic prediction of 
DMI. 
 
 
4. Conclusions  
 
This international consortium has created the 
world’s biggest collection of data for feed 
intake on genotyped dairy cattle. In this study, 
we demonstrated that, provided a multi-trait 
approach is used, combining similar 
phenotypes across countries can increase the 
accuracy of genomic breeding values for 
important traits, such as DMI. Enlarging the 
combined dataset with unique phenotypes does 
increase the accuracy of the genomic 
prediction. This stimulates further international 
collaboration. 
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Table 2. Matrix of bended genetic correlations between 11 countries (Australia lactating (AUS), 
Canada (CAN), Denmark (DNK), Australian heifers (AU_h), New Zealand heifers (NZ_h), Germany 
(GER), Iowa-USA (US_I), Ireland (IRL), the Netherlands (NLD), United Kingdom (UK) and 
Wisconsin-USA (US_W). 

 AUS CAN DNK AU_h NZ_h GER US_I IRL NLD UK 
CAN 0.66                  
DNK 0.56 0.32                
AU_h 0.27 0.30 0.05              
NZ_h -0.26 0.09 -0.19 0.22            
GER 0.32 0.13 0.85 0.17 0.17          
US_I 0.36 0.14 0.79 -0.14 -0.06 0.68        
IRL 0.00 0.04 0.16 0.39 0.56 0.45 -0.15      
NLD 0.83 0.77 0.82 0.20 -0.14 0.62 0.63 0.02    
UK 0.57 0.80 0.37 0.61 0.40 0.46 0.08 0.50 0.68  
US_W 0.53 0.52 0.75 0.29 0.15 0.86 0.50 0.35 0.80 0.76 
 
Table 3. The average of the approximated accuracy (acc) of genomic prediction estimated in a 
multivariate run between all countries in the gDMI dataset. In all analyses, a multi-country reference 
set was taken consisting of all data except the validation set. The corresponding standard errors (se) 
are shown separately. 

 AUS CAN DNK AU_h NZ_h GER US_I IRL NLD UK US_W 
acc 0.48 0.40 0.37 0.39 0.44 0.45 0.46 0.48 0.54 0.49 0.38 
se 0.08 0.19 0.08 0.04 0.05 0.07 0.06 0.06 0.04 0.08 0.15 

 

 
Figure 2. Dendogram of the 11 countries, showing which countries group together, based on the 
matrix of bended genetic correlations. 
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