
INTERBULL BULLETIN NO. 48. Berlin, Germany, May 20 - 21, 2014 

Genotype Imputation Based on Discriminant and Cluster Analysis 
 

Medhat Mahmoud, Theo Meuwissen and Thore Egeland 
Norwegian University of Life Sciences, Ås, Norway 

Correspondence to Medhat Mahmoud, E. mail: mahmoud@fbn-dummerstorf.de 
___________________________________________________________________________ 

Abstract 
 
The recent development of high-throughput systems for genotyping SNP in Eukaryote has led to an 
extraordinary amount of research activity, particularly in  areas  such  as  whole-genome  selection  of  
livestock  and  genome-wide association studies for detection of  quantitative  trait. Recent 
technological advances allow us to rapidly genotype more than 10 million SNPs in an individual, 
accounting for 10% of the estimated number of common SNPs (more than 1% minor allele frequency) 
across the population. As a result of missing SNPs, true associations might be missed if the causal 
SNP is not genotyped or if the causal variant is an unknown variant. SNP imputation is important in 
reducing the cost of re-sequencing and  when  genotyping  all  considered  animals  may be  too  
costly  and  sometimes  not feasible because DNA may not be available  for all animals. 
Computational algorithms and statistical methods have been developed to account for some of the 
unobserved variants. The main idea behind these methods is based on the observation that SNPs in 
close proximity to one another in the genome tend to be correlated, or in non-random association 
(linkage disequilibrium). “Several articles have described comparisons of imputation methods with 
respect to computational efficiency and the accuracy of results”. Consequently, we perceived a 
substantial need to proposing a new technique for SNP Imputation with applying linear 
Discrimination and Clustering Analysis Algorithms. To evaluate the factors potentially affecting 
imputation accuracy rates (ARs), we used simulated data sets to investigate the effects of Linkage 
disequilibrium (LD), Minor allele frequency (MAF) of un-typed SNPs, marker density (MD), 
reference sample size (n) and the different numbers of SNPs in every haplotype block, in imputation 
accuracy rate (AR) and the performance of linear discriminant analysis and clustering Analysis as a 
SNP imputation method. In optimal state of genotype data (in High LD, low MAF, and high density 
haplotype blokes) both methods (Clustering and discrimination) were working efficiently, and the 
accuracy can reached 89 %. 
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Introduction 
 
Imputation is the substitution of some value 
for missing data, the practice of ‘filling in’ 
missing data with plausible values, is an 
attractive approach to analysing incomplete 
data. When substituting for a single value, it is 
known as "unit imputation"; when substituting 
for a component or a complete variable or 
item, it is known as "item imputation". After 
imputing all missing values, the dataset can 
then be technically analysed using normal 
methods for complete data. We should ideally 
take into our account that there is a greater 
degree of uncertainty than if the imputed 
values had actually been observed.  

There are many reasons behind why the 
data is missing, one nature of missing data 

could be ‘missing completely at random’ 
(MCAR), and it may be because the equipment 
malfunctioned, or the data were entered in an 
uncorrected way. When some data are missing 
completely at random, it means that the 
probability that an observation 𝑋𝑖 is missing is 
unrelated to the value of 𝑋𝑖 or to the value of 
any other variables, e.g. Human HapMap 
would not be considered as MCAR if Whites 
were more likely to omit reporting genotype 
than African Americans. MCAR is an 
important consideration, because in this case 
the analysis remains unbiased. We may lose 
power for our design, but the estimated 
parameters are not biased by the absence of 
data. If data are not completely missing at 
random then they are classified as ‘Missing 
Not at Random’ (MNAR). When the data are 
MNAR then we have the problem of a biased 
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dataset, and the only way to obtain an 
unbiased estimate of parameters is to model 
the missing-ness or to write a model that 
accounts for the missing data (Dunning and 
Freedman 2008).  
 
 
Genome-wide imputation 
 
Recent technology in high-throughput 
genotyping estimated that the human genome 
contains more than 7 million common single 
nucleotide polymorphisms (SNPs) with minor 
allele frequencies (MAF) about 5% (Barrett 
JC., Cardon L. R., 2006), and only a small 
fraction of these SNPs can be directly assayed 
using current high-density microarrays. Due to 
the linkage disequilibrium (LD) among 
neighbours markers, many un-typed or missing 
SNPs are highly correlated with one or more 
surrounding nearby assayed SNPs. Therefore, 
testing assayed SNPs for association to traits 
of interest will have some power to detect or 
prediction of un-typed causal SNPs. Further, if 
the assayed SNPs are uniformly distributed 
across the genome, maximal genetic coverage 
can be achieved (Hao K., Schadt E. E., 2008). 
The same in genome-wide association studies, 
where significant signals suggest association 
between phenotypes and causal SNPs in the 
surveyed genome region. To improve this type 
of association analysis, the genotypes of 
missing SNPs can be imputed or predicted 
based on nearby markers (SNP) and then 
directly tested for association with phenotypes 
of interest (Servin B., Stephens M., 2007). The 
general aim of this study is to test the 
performance of modern multivariate 
techniques like (linear discriminant and 
clustering analysis) in SNP imputation. But in 
genotype data there are many factors that 
affecting the imputation accuracy, this will be 
investigated by 

1- Testing linear discriminant imputation and 
clustering imputation in low and high Linkage 
disequilibrium genome regions (LD). 2- 
Testing linear discriminant imputation and 
clustering imputation in different levels of 
Minor allele frequency genome regions 
(MAF). 3- Testing linear discriminant 
imputation and clustering imputation in 
different levels Marker density regions (HD, 
LD). 4- Testing linear discriminant imputation 
and clustering imputation with different 
Reference sample sizes (n). 5- Testing linear 
discriminant imputation and clustering 
imputation with different Haplotype block 
sizes (K).  N.B. We measure the Haplotype 
block size by counting the number of SNPs per 
haplotype block, not by Centimorgan. 
 
 
Materials and Methods  
 
Many datasets have been simulated for this 
study (See Table1), each Dataset consisted of a 
number of haplotype blocks (rows of 
individuals) and a number of SNPs markers 
(columns of variables), simulated with some 
constants parameters and only one varied 
parameter (parameter under investigation), for 
example: to investigate the effects of Minor 
allele frequency (MAF) of un-typed SNPs in 
imputation accuracy rate by a given imputation 
method, we simulate a different datasets with a 
constant correlation between SNPs, a constant 
reference sample size (n) and a constant 
number of SNPs in every haplotype blocks, 
but with a different levels of Minor allele 
frequency (MAF) of un-typed loci in each 
datasets, then we measured the differences in 
accuracy rate coming from using different 
dataset with different MAF. 

Table 1. Presentation of all datasets used in imputation experiment. 
Dataset Test Correlation MAF

% 
No. haplotypes No. SNP 

1 No. of SNPs in (LLD) region 0.2 49 1000 Vary 

2 No. of SNPs in (HLD) region 0.8 49 1000 Vary 

3 Minor allele frequency (MAF) 0.2 Vary 1000 10 

4 Marker density (MD) Vary 49 1000 10 

5 Reference sample size (n) 0.2 10 1000 10 
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Discriminant imputation 
 
Let y be a categorical imputation variable with 
categories 1 and 2 and (x1, x2,…, xp) the set 
of predictor variables resulting from replacing 
any categorical predictor variable of y  (major 
and minor allele) by its corresponding dummy 
variables (1 and 2). Let nj be the number of 
values of Yobs in category j, f (. |µ, Σ) the 
probability density function of the multivariate 
normal distribution with mean vector μ and 
variance Σ, respectively. Under the assumption 
that the conditional probability distribution of   
x =  �x1, x1, … , xp�    given y = j is a 
multivariate normal distribution with mean 
vector μj and covariance matrix Σ the 
underlying statistical model of discriminant 
imputation is given by 

P(y = j|x) =
f(x|µj;Σj)πj

∑ f(x|µv;Σv)πvs−1
v=0

 

The previous model follows directly from 
substitution of P(x|y = v) = f(x|µv;Σv) and 
P(y = v) = πv into the formula of Bayes. 
 
 
Nearest-neighbour (Clustering-based 
Imputation) 
 
Nearest-neighbour imputation method (NIM) 
is an alternative form of hot-deck donor 
imputation. With this imputation, values from 
one record (the “donor”) are used to replace 
the erroneous and missing values in another 
record (the “recipient”). The name “hot-deck” 
indicates that the donor and the recipient come 
from the same data set. Only records that are 
error-free may be used as donors. 
 

To apply nearest-neighbour hot-deck 
imputation, a distance function D(i,k) must be 
defined that the measures the distance between 
two units i and k, where i is the item non-
respondent and k is an arbitrary item 
respondent. The distance function D(i,k) can 
be defined in many different ways. A 
frequently used general distance function is the 
so called Minkowski distance: 

 
 
 

D(i, k) =  �� �xij − xkj�
z

j
�

1
z
 

where the x variables are numerical, and the 
sum is taken over all auxiliary variables; xij 
(xkj) denotes the value of variables xj in 
record i (k). Let the smallest value of D(i,k) be 
attained for item respondent d [d=arg mink 
D(i,k)], then respondent d is said to be the 
nearest-neighbour of the item non-respondent i 
and becomes its donor. For z=2 the 
Minkowiski distance is the Euclidean distance 
and for z=1 it is the so-called city-block 
distance. For larger z, large difference between 
xij and xkj are “punished” more heavily. In 
this Study we will use the Euclidean distance. 
 

Practically, we divided the dataset 
(including the records with missing values) 
into (n) clusters. Next, missing values of an 
instance i are patched up with the plausible 
values generated from K’s cluster. The 
following experiments will test the 
performance of the proposed method in 
genotype imputation task. 

 
 

Validation (The holdout method) 
 
The holdout method is the simplest method of 
cross validation. Each data set is split into two 
parts or sets, called the training-dataset 
(reference data-set) and the test-dataset. In 
LDA the prediction model is fit using the 
training data-set only. But in Clustering the 
prediction model is fit using the training data-
set and the Test data-set. Usually we using 
50% training data-set in this study, except in 
the last experiment where we measuring the 
effect of the size of the training dataset (where 
we varying the size of the training dataset (n)). 
 

Then the same model is used to predict the 
outcome values for the data in the test data-set 
(only in LDA, were it has never seen these 
output values before). 
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The errors it makes (when we using the 
model to predict the outcome) are accumulated 
to give the mean absolute test set error, which 
is used to evaluate the model, in other word, 
the accuracy of this model counted by 
measuring the correlation between the true and 
the predicted value of the imputed SNP vector.  
 

 

 

The advantage of this validation method is 
that It gives us the possibility to measure how 
much the size of the training-dataset (reference 
data-set) can affect the imputation accuracy, 
because in real life usually the data set contain 
some completed data (which can considered as 
training-dataset) and the rest have some 
missing values (considered as test-dataset) 
 

However, the evaluation usually depends 
heavily on which data points end up in the 
training-dataset and which end up in the test-
dataset. And estimating the error rate will be 
misleading if we happen to get an 
“unfortunate” split. 
 
 

Results 
 
Comparison between the performance 
of LDA and Clustering analysis in SNP 
imputation.  
 
1- Figure 1: shows the effects of size of 

haplotype block (number of SNPs per 
haplotype), on imputation accuracy 
rate (AR) using low and high linkage 
disequilibrium dataset (LLD, HLLD). 
When LDA is used for imputation with 
constant MAF =49% and low linkage 
disequilibrium data the accuracy rate 
ranging from 60% (using 5 SNPs) to 
70% (using 100 SNPs), while with 
High linkage disequilibrium data the 
accuracy rate ranging from 88% (using 
5 SNPs) to 93% (using 100 SNPs). 
This is a high LD dataset AR is 
generally substantially higher and there 
is less improvement by increasing the 
number of SNPs. 

 
 
 

 
Figure 1. The effects of using Low and High linkage disequilibrium dataset on Accuracy rate of LDA 
in imputation. 
 

2- Figure 2: Shows the effects of number of 
SNPs surrounding the missing one, in 
imputation accuracy rate (AR) using low 
and high linkage disequilibrium dataset 
(LLD, HLD). When clustering is used for 
imputation with constant MAF =49% and 
low linkage disequilibrium data the 
accuracy rate ranging from 55% (using 5 

SNPs) to 71% (using 100 SNPs), while 
with High linkage disequilibrium data the 
accuracy rate ranging from 75% (using 5 
SNPs) to 91% (using 100 SNPs). 
Generally clustering is less accurate than 
LDA and need more SNPs to reach high 
accuracy.
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Figure 2. The effects of no.SNPs using Low and High linkage disequilibrium dataset on accuracy rate 
of Clustering in imputation. 
 

3-  The effects of Minor allele frequency 
(MAF): Figure 3. 
Using LDA with constant correlation 
between SNPs = 0.10 and using the 
surrounding 10 SNPs the accuracy rate 
ranging from 0.99 (using MAF=0.10) to 
0.75(using MAF=0.49), (See Figure 3). 
While using Clustering with constant 
correlation between SNPs = 0.10 and 

using the surrounding 10 SNPs the 
accuracy rate ranging from 92% (using 
MAF=0.10) to 69% (using MAF=0.49). It 
seems that AR is much more accurate 
when MAF is low compared to when it is 
high. A lower MAF usually corresponds 
to a stronger LD with nearby markers and 
the recombination plays a primary role in 
LD decay (Yu-Fang Pei., 2008). 

 

 
Figure 3. The effects of Minor allele frequency on accuracy rate using LDA and Clustering. 
 

4- The effects of marker density (MD): 
Figure 4. 
Using LDA With constant MAF =50% 
and using the surrounding 10 SNPs the 
accuracy rate ranging from 61% (using 
Corr. =0.10) to 97% (using Corr. =0.90). 
(See Figure 4) While using Clustering 

with constant MAF =49% and using the 
surrounding 10 SNPs the accuracy rate 
ranging from 55% (using Corr. =0.10) to 
94% (using Corr. =0.90). Here, we 
measure the effect of Marker density by 
varying the correlation between markers 
(SNPs). 
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Figure 4. The effects of marker density on accuracy rate using LDA and Clustering. 
 
 
5-  The effects of reference sample size (n): 

Figure 5. 
Using LDA, with constant MAF =10%, 
constant correlation between SNPs = 0.10 
and using the surrounding 10 SNPs the 
accuracy rate ranged from 72% (using n 
=0.10) to 83% (using n =0.90), while 

using Clustering, with constant MAF 
=10%, constant correlation between SNPs 
= 0.10 and using the surrounding 10 SNPs 
the accuracy rate ranged from 33% (using 
n =0.10) to 79% (using n =0.90). This 
shows that clustering needs higher (n) to 
reach high accuracy. 

 
 

 
Figure 5. The effects of reference sample size on accuracy rate using LDA and Clustering. 
 
 
5. Discussion and Conclusion 
 
This study compared two different approaches 
(Discriminant-based SNP imputation and 
Nearest-neighbour or Clustering-based SNP 
imputation) using haplotype blocks instead of 
individual markers or all available markers. 
The average number of SNPs per haplotype 
blocks varying from 5 SNPs (in low LD 
region) to 100 (in High LD region). To 
investigate the performance of these two 
methods we simulated a group datasets each 
one simulated  to  test  the  effects  of  Linkage  

disequilibrium (LD), Minor allele frequency 
(MAF) of un-typed SNPs, marker density 
(MD), reference sample size (n) and the 
different numbers of SNPs in every haplotype 
block, in imputation accuracy rate (AR) and 
the performance of The Linear discriminant 
analysis and Clustering Analysis as a SNP 
imputation method. The dataset was also split 
in a training dataset and test dataset. The 
methods were validated using the holdout 
method then measuring the correlation 
between the true and imputed SNP in test 
dataset.  
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The performance of the elementary 
imputation methods, clustering and 
discrimination is generally good. However, to 
compare the performance of each algorithm 
with the currently used methods like in 
MACH, BEAGLE, and IMPUTE, more test 
experiments are needed to be conducted. 
Furthermore, to be sure that the algorithms are 
reliable, the same data sets should be used to 
run the experiments. Like any simulation 
study, this one has its limitations and 
advantages in some cases like: 

 
1- In low LD region, the clustering-based 

method can use the correlation between 
records instead of the correlation between 
markers in the imputation process. 

2- The Discriminant-based method also can 
handle numerical and categorical data 
simultaneously without rounding-up the 
results (which can affect the accuracy of 
imputation). 

 
But in optimal state of genotype data (in 

High LD, low MAF, and high density 
haplotype blokes) both methods (Clustering 
and discrimination) were working efficiently, 
and the accuracy can reached 89 %. 
 

Further studies and experiments are 
necessary before one can conclude whether the 
establishment of Discriminant-based and 
Clustering-based SNP imputation is feasible or 
not. 
 

The Clustering-based SNP imputation 
models show a lot of promise for SNP 
imputation (and in Microarray analysis in 
general) based on the associations between 
records instead of using the association 
between markers. 
 

Results obtained had many similarities with 
those obtained both from Discriminant-based 
imputation and Clustering-based SNP 
imputation approaches in similar datasets. 
 

Linear discrimination can be considered as 
a complement algorithm for Clustering 
especially when applied to noisy data in what 
we can call “Cluster-based pattern 
discrimination CPD”, which differs from 
standard clustering by being simultaneous 

subspace selection via linear discriminant 
analysis (LDA). 
 

LDA is the most widely used in the two 
dimensions or categorised data. However, both 
statistical methods suffer from some 
deficiencies. Clustering analysis has the 
problem of selecting different values of K (i.e. 
number of nearest neighbouring haplotype 
records). Using different K-values results in 
different performance of the algorithms which 
in turn affects the final evaluation for the 
method accuracy. So that we propose to test 
the optimal K-value each time the algorithm is 
used. Finally, searching for a new technique 
and a new application or a new demonstration 
of Discriminant and Clustering analysis was 
the main interest of this thesis because 
nowadays the application of the modern 
statistical techniques such LDA, Clustering, 
PCA, PLS …and etc., are so important 
considerations in the field of Bioinformatics 
and Applied statistic. 
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