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Abstract 
 
Genetic evaluation of dairy cattle using random regression test-day models is now common 
internationally. In Australia a multiple-trait multi-lactation test day model (MTMLTD) was 
introduced. Legendre polynomials of second order were used to model the genetic and permanent co-
variance structure throughout the lactation trajectory. This paper described the results from the 
implementation of the major components of the Australian test-day model including, co-variance 
components estimation, reliability calculations, adjustments for herd-year-season variance 
heterogeneity and simultaneous de-regression of cow’s and bull’s EBVs to be used in the genomic 
analyses.  
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Introduction 
 
Until 2015 in Australia, breeding values for 
milk yield traits are predicted using an animal 
model with repeated records from all 
lactations. The records used for prediction are 
those from individual tests weighted by the 
length of lactation and parity.  The model 
ignores the genetic and environmental 
association between milk, fat and protein 
within and across lactations.  
 

In the last decade most of the countries with 
advanced breeding programs adopted the so 
called random regression test-day model for 
estimation of breeding values in dairy cattle. 
The advantages of the random regression 
approach are that cows can be evaluated on 
any number of tests and the model can account 
for different genetic, permanent environmental 
and residual variance over the course of 
lactation. 
 

The objective of this report is to present 
some results from the application of multiple 
trait multi lactation random regression test day 
model to the genetic evaluation of Australian 
dairy cattle. The paper is divided into four 
categories: 

 

1. Estimation of co-variance matrices and 
related genetic parameters 

2. Adjustment for heterogeneous herd-
year-seasons variances 

3. Reliability approximations 
4. De-regression of 305 days final 

breeding values 
 
 

Materials and Methods 
 
Estimation of co-variance components  
 
The data used for estimation of co-variance 
components were test-day yields of milk, fat 
and protein yield from the first 3 lactations of 
Australian Holstein cows collected from 1985 
to 2012. Several data sets were randomly 
extracted from the ADHIS database. The 
number of cows with records varied from 
20,000 to 30,000 and the minimum number of 
required tests ranged from 5 to 10. Sires with 
less than 10 daughters were excluded from the 
data as well as herd-test-days with less than 5 
contemporaries. Days in milk ranged from 6 to 
305 days. Cows were required to have first 
lactation record to be included in the study. All 
3 traits were required on each test day. Two 
seasons were defined: January to June and July 
to December. The age at calving was 
converted to 22 age classes.  
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The model used for co-variance and 
breeding values estimation can be written in 
matrix notation as follows: 
 
𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍1𝑎𝑎 + 𝑍𝑍2𝑝𝑝 + 𝑒𝑒  (1) 
 
where y is the vector of observations; b is a 
vector of systematic effects including herd-
test-day, year-season, age at calving, and fixed 
regression on days in milk using Legendre 
polynomials of order 4;  a is the vector of 
random regression coefficients of the additive 
genetic animal effect; p is the vector of random 
regression coefficients of permanent 
environmental effects; e is the vector of 
residuals; and X,  𝑍𝑍1 and 𝑍𝑍2 are incidence 
matrices corresponding to the observations for 
fixed and random effects. The rows of the Z 
matrices are Legendre polynomials on DIM of 
order 2. The assumptions of the model are: 
 
𝑦𝑦|𝑏𝑏, 𝑎𝑎, 𝑝𝑝, 𝜎𝜎𝑒𝑒𝑖𝑖 

2 ~𝑀𝑀𝑀𝑀𝑀𝑀(𝑋𝑋𝑋𝑋 + 𝑍𝑍1𝑎𝑎 + 𝑍𝑍2𝑝𝑝, 𝑅𝑅)  , 
 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑎𝑎′, 𝑝𝑝′, 𝑒𝑒′] = �
𝐺𝐺⨂𝐴𝐴 0 0

0 𝑃𝑃⨂𝐼𝐼 0
0 0 𝑅𝑅

� , 

 
where G is the co-variance matrix of the 
additive genetic regression coefficients, A is 
the relationship matrix among all animals, and 
P is the co-variance matrix of the permanent 
environmental regression coefficients. 
 

𝑅𝑅 = Σ+  �
𝑅𝑅11 0 0

0 𝑅𝑅22 0
0 0 𝑅𝑅33

�
𝑖𝑖

 , where 𝑅𝑅𝑗𝑗𝑗𝑗 is the 

residual co-variance matrix for j traits and i = 
1, .., n residual classes. 
 

Blocks within R contain (3 x 3) co-
variances among traits with elements that 
depend on lactation 1, 2 or 3, over 10 time 
intervals of approximately 30 days. 
 

The assumptions regarding prior 
distributions for the unknown parameters were:  
 
𝐺𝐺|𝑣𝑣𝑎𝑎, 𝑆𝑆𝑎𝑎2~𝑊𝑊−1(𝑣𝑣𝑎𝑎, 𝑣𝑣𝑎𝑎𝑆𝑆𝑎𝑎2),  
P|𝑣𝑣𝑝𝑝, 𝑆𝑆𝑝𝑝2~𝑊𝑊−1(𝑣𝑣𝑝𝑝, 𝑣𝑣𝑝𝑝𝑆𝑆𝑝𝑝2), 
𝑅𝑅|𝑣𝑣𝑒𝑒, 𝑆𝑆𝑒𝑒2~𝑊𝑊−1(𝑣𝑣𝑒𝑒, 𝑣𝑣𝑒𝑒𝑆𝑆𝑒𝑒2),  
 
where 𝑣𝑣𝑎𝑎, 𝑆𝑆𝑎𝑎2, 𝑣𝑣𝑝𝑝, 𝑆𝑆𝑝𝑝2, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑒𝑒, 𝑆𝑆𝑒𝑒2 correspond to 
the degree of belief and prior values for co-

variances of additive genetic and permanent 
environmental regression coefficients and for 
residual variances, respectively. The term 𝑊𝑊−1 
corresponds to the inverse Wishart 
distribution. 
 

The analyses were performed by Gibbs 
sampling algorithm using GIBBS3F90 
program (Misztal, 2010). 

 
 
Adjustment for heterogeneous herd-year-
season variances  
 
The data used to estimate the correlation 
between consecutive year-seasons within a 
herd; herd-year-season and residual variances 
contained test-day records of cows with 
calving date from 1990 to 2005 from 506 
randomly selected herds. There was 22 year-
season’s subclasses. 
 
The following model was used: 
 
𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍ℎ𝑦𝑦 + 𝑒𝑒    (2)      
 
where y is a vector containing test-day records 
for milk, fat and protein yields for lactations 1, 
2 and 3; X and Z are incidence matrices; b is a 
vector containing fixed age at calving effect 
and fixed regression on days in milk using 
Legendre polynomials of order 4; hy is a 
random effect containing herd-year-season 
effect; and e is a random residual vector. 
 

The covariance structure of the model was 
assumed to be: 
 
𝑉𝑉𝑉𝑉𝑉𝑉 �ℎ𝑦𝑦𝑒𝑒 � = �𝐻𝐻 0

0 𝑅𝑅�                              
 
where H is a block diagonal matrix of first 
order autoregressive correlations matrices, i.e. 
for ith herd having records in rsi year-seasons 
and it takes the form: 
 

𝜎𝜎ℎ𝑦𝑦2 �
1 𝜌𝜌 𝜌𝜌2
𝜌𝜌 1 𝜌𝜌
𝜌𝜌2 𝜌𝜌 1

�                                   

 
where 𝜌𝜌 is the correlation between consecutive 
year-seasons within a herd and 𝜎𝜎ℎ𝑦𝑦2  is the herd-
year-season variance. Nine separate analyses 
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were performed for each trait within lactation. 
Model (2) was fitted by the AR(1) procedure 
in ASReml (Gilmore, 2003). 
 

The method to adjust for heterogeneous 
herd-year-season variances was similar to 
those reported by Kistemaker & Schaeffer 
(1998) and Strabel et al. (2006). 
 

Data from three extractions March 2012, 
2013 and 2014 were used to assess the method. 
Nine separate sparse BLUP equations were 
constructed using model (2) and solved 
separately using PCG method with iteration on 
data. The autoregressive matrix was 
constructed using the rules described by Wade 
and Quaas (1993). The observations were 
adjusted by using correction factors with 
different weights. After adjustments breeding 
values were estimated using multi-trait multi-
lactation RR model. Differences between each 
bull’s EBV and average breeding value of the 
parents (PA) were calculated and basic 
statistics for these quantities were derived. 

 
 
Reliability approximations 
 
The sample data used for evaluation of the 
procedure for reliability approximations 
contained 24,677 cows with records, daughters 
of 1,135 sires.  
 

The model for the approximate and true 
reliability was as follows: 
 
y = Xb + Za + Wp + e  (3) 
 
where y was a vector of observations; b was a 
vector containing herd-test-day fixed effect; a 
was a random vector of animal genetic effects; 
p was a random vector containing permanent 
environmental effects; and e was a random 
residual vector. The co-variances matrices 
were the same as for the full model. 
 

The true reliability was calculated from 
prediction error co-variance matrices obtained 
from the sparse inverse of the mixed model 
coefficient matrix. The approximated 
reliabilities were calculated using an 
adaptation of the information source method 
(Ducrocq and Schneider, 2007). 
 

De-regression of cow and bull breeding 
values 
  
The data used for the de-regression analyses 
contained 305 days EBVs for milk, fat and 
protein yield obtained from the routine RR 
March 2015 run. There were 13,589 genotyped 
cows and 4,134 genotyped bulls from the 
Holstein and Jersey breeds. The relationship 
matrix contained 57,605 relatives of these 
animals. The number of phantom parent 
groups was 53. 
 

The de-regression procedure is based on the 
following mixed-model equations: 
 

�
1′𝑅𝑅𝑖𝑖−11 1′𝑅𝑅𝑖𝑖−1 0
𝑅𝑅𝑖𝑖−11 𝑅𝑅𝑖𝑖−1 + 𝐴𝐴𝑎𝑎𝑎𝑎−1𝛼𝛼 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎−1

0 𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎−1 𝛼𝛼 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−1 𝛼𝛼
𝛼𝛼� �

𝜇̂𝜇
𝑎𝑎�
𝑝𝑝𝑝𝑝�
� =

�
1′𝑅𝑅𝑖𝑖−1𝑦𝑦𝑖𝑖
𝑅𝑅𝑖𝑖−1𝑦𝑦𝑖𝑖

0
�     (4) 

 
where R-1 is a diagonal matrix containing 
EDCs for all animals we want to de-regress,  
A-1 is the numerator relationship matrix which 
includes unknown parents groups and 𝛼𝛼 is the 
ratio of residual to additive genetic variance. A 
small constant was added to the diagonal of 
𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−1  to make the system positive definite. 
The relationship matrix is a subset of a larger 
matrix used in the national evaluation. The 
𝐴𝐴𝑎𝑎𝑎𝑎−1 part contains only animals that are 
genotyped and included in the reference set. 
𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎−1  is the part that contains all non-
genotyped animals that are related to the 
animals in the reference set. The matrix on the 
left in the above system is sparse but 
unordered. In order to facilitate the solution to 
the equations, the system is ordered by using a 
permutation matrix P such that the product 
PCP-1 is ordered, where C is the left hand side 
in (4). The de-regressed proofs were obtained 
in a similar way described elsewhere (Jairath et 
al., 1998). The part pertaining to the un-
genotyped animals and groups was solved by 
using PCG method. Three different R matrices 
were used: 1). EDC based on own and progeny 
performance only (OP); 2). The total 
reliabilities were de-regressed and converted to 
EDC using the procedure described by Harris 
and Johnson (2010) (HJ); EDC obtained from 
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the final full reliabilities. The de-regressed 
proofs were used as a phenotype for estimation 
of DGV and related reliabilities (RL).  
 

The DGVs were calculated from marker 
effects and the reliabilities were obtained from 
the inverse of the G-BLUP coefficient matrix. 
Regressions of DGV on phenotype were 
calculated as well as average reliabilities using 
different EDCs and de-regressed proofs. 
 
 
 Results and Discussion 
 
Co-variance estimates 
 
The combined estimates of the daily additive 
genetic variances for milk, fat and protein 
yields had the highest values at the beginning 
of the lactation and the lowest at the end. The 

first lactation daily estimates had lower values 
compared to the values for the second and 
third lactations. The estimates reported here 
were in line with most of the literature 
estimates obtained from Gibbs sampling 
(Jamrozik et al., 1997; Strabel and Jamrozik, 
2006; Muir et al., 2007).  
 

The shape of the curves of the daily 
permanent environmental variances for all 
yield traits throughout lactations was similar to 
the majority of the studies found in the 
literature. The highest values were observed in 
the beginning and at the end of lactation. The 
values for first lactation were the lowest 
followed by second and third lactation. 
 

The estimates of heritabilities from 
combined  MCMC estimates are presented in 
Figures 1 to 3.  

 

 
Figure 1. Estimates of daily heritabilities for milk yield obtained from combined MCMC analyses. 
 

 
Figure 2. Estimates of daily heritabilities for fat yield obtained from combined MCMC analyses. 
 

 
Figure 3. Estimates of daily heritabilities for protein yield obtained from combined MCMC analyses. 
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The literature estimates of heritabilities 

obtained from Gibbs sampling analyses with 
random regression models were also very 
heterogeneous considering both magnitude and 
shape of heritability curve. The heritability 
estimates obtained from this study ranged from 
0.14 to 0.35 with average daily heritability of 
0.29, 0.26 to 0.23 for milk, fat and protein 
yields, respectively. The values of 305 days 
heritabilities in first lactation were 0.44, 0.48, 
and 0.39 for milk, fat and protein, respectively. 
Similar estimates were reported by Muir et al. 
(2007). 
 

For all traits higher values were observed in 
the middle part of the lactation. These findings 
are in line with the findings reported by other 

authors (e.g. Swalve, 1995; Rekaya et al. 1999; 
Liu et al. 2000;  Druet et al. 2003). 
 

The estimates of the residual co-variances 
were higher in the beginning of the lactation 
period compared to the estimates at the end of 
lactation. This pattern is in a good agreement 
with most of the studies in the literature. 
However, the estimates in period 10 were 
higher compared to those from period 9. This 
pattern has not been found in any of the 
literature reports dealing with random 
regression.  
 

Table 1 presents the estimates of the genetic 
correlations between selected days in milk for 
milk, fat and protein yield that are obtained 
from MCMC analyses.  

 
Table 1. Estimates of genetic (above diagonal) and permanent environmental correlations (*100) 
(below diagonal) between protein yields on selected days in milk from combined Gibbs sampling 
analyses. 
 
 Lactation 1 Lactation 2 Lactation 3 
DIM 15 45 125 205 265 305 15 45 125 205 265 305 15 45 125 205 265 305 
15  95 53 36 44 51  94 64 55 53 41  96 72 55 38 19 
45 97  77 61 59 54 97  86 75 57 31 96  88 73 48 17 
125 70 84  95 76 50 68 83  95 61 17 61 80  94 64 20 
205 48 63 91  90 64 44 59 89  81 42 41 59 90  84 46 
265 38 46 64 87  91 35 43 65 90  87 39 47 64 88  87 
305 33 32 35 62 93  32 34 44 74 96  39 38 40 69 95  
 
 

The genetic correlations across lactations 
within traits were all positive and ranged from 
0.19 to 0.97, 0.25 to 0.97, and 0.17 to 0.96 for 
milk, fat and protein yield, respectively. The 
correlations between yields on days that were 
close together were higher compared to those 
for days that were further apart. The lowest 
correlations were observed for test days 
recorded at the beginning of a lactation and at 
the very end. Many other studies reported 
similar findings. It should be noted that in this 
case there were no negative estimates between 
any of the selected days in milk. Negative 
genetic correlations for selected days in milk 
were reported in several studies  (Zavadilova et 
al. 2005; Rekaya et al. 1999; Liu et al. 2000; 
Kettunen et al. 2000). 
 

The problem of selecting the best random 
regression model and related co-variance 

components is not trivial, and has been 
discussed in several studies (Druet et al. 2003; 
Lopez-Romero and Carabano, 2003; Strabel 
and Misztal, 1999). On one hand the difficulty 
comes from the fact that different countries 
used different functions to describe the random 
curves. Although Legendre polynomials have 
become a standard for this part of the model, 
there are differences in their order between 
different countries. For the fourth order is used 
in Canada (Kistemaker, 2003) and the fifth in 
the United Kingdom (Mrode et al. 2003). 
 

Some authors argue that higher order 
polynomials improve model plausibility. This 
may be true for certain data sets and structures 
but it leads to several problems. The use of 
higher order polynomials results in extreme 
values for additive genetic co-variances at the 
peripheries of the lactation and a negative 
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correlation for the extremes of lactation (Pool 
et al. 2000; Strabel et al. 2005; Zavadilova et 
al. 2005). Moreover, analyses of the 
eigenvalues of the co-variance matrices shows 
the diminishing importance of adding further 
parameters. Additionally, the more parameters  
that are used, the less accurately they are 
estimated, because fewer records are available 
for each estimate. The use of unreasonably 
high estimates of genetic variances may cause 
considerable overestimation of the accuracy of 
the genetic evaluations.   

Overall the estimates of the genetic 
parameters in this study were in a good 
agreement with the literature values.  

 
 
Herd-year-season heterogeneity adjustments 
 
Variance components for herd-year-season, 
residual and the correlation coefficient 
between consecutive year-seasons within a 
herd are presented in Table 2.  
 

 
Table 2. Variance components estimates using model (2). 
 
Component Milk 1 Fat 1 Protein 1 Milk 2 Fat 2 Protein 2 Milk 3 Fat 3 Protein 3 

𝜎𝜎𝑒𝑒2   9.795    0.017   0.010   13.522     0.024   0.013   16.600     0.032    0.016 
𝜌𝜌     0.671   0.635       0.567        0.741   0.756       0.640        0.745   0.773        0.621 

 
𝜎𝜎ℎ𝑦𝑦2  14.321     0.017   0.015   18.325     0.021   0.019   19.083     0.023    0.020 

 
  

The estimates of the correlation coefficients 
between consecutive year-seasons within a 
herd are significantly less than 1 which 
suggests that there is heterogeneity of 
variances within a herd.  
 

A measure of improvement of the 
evaluation method using adjustments is the 
bias of the EBVs of selected animals 

calculated as a difference between their EBVs 
and their parent average (PA). For all traits the 
weight of 1.5 was the most effective.  Table 3 
contains results of analyses of differences 
between EBV of bulls having at least 20 
daughters and their parent average. 
 

Applying the data adjustment decreased the 
average difference between EBVs and PA. The  

 
Table 3. Basic statistics for the difference between estimated ABVs of bulls obtained from models 
with and without correction for heterogeneous variance. 
  
Method Mean SD Minimum Maximum 
No adjustment     
Milk yield -75.9 284.6 -1284.1 1912.2 
Fat yield -3.2 9.9 -56.6 38.8 
Protein yield -2.7 7.6 -41.3 30.1 
Adjustment 
w=1.5 

    

Milk yield -68.8 259.2 -1156.1 1403.3 
Fat yield -2.9 9.1 -43.4 30.5 
Protein yield -2.5 6.9 -31.3 24.4 
 
decrease in differences found for weight = 1.5 
was 9.4%, 7.5% and 8.6% for milk, fat and 
protein yield, respectively. These percentages 
were slightly higher than those reported by 
Kistemaker and Schaeffer (1998) in Canada.  
 

The correlations between EBV without 
adjustment and EBV with adjustment for bulls 
with more than 20 daughters were very high 

suggesting very little re-ranking of the EBVs. 
This result is in line with the majority of the 
studies reported in the literature. 
 

To investigate the effect of HV adjustment 
on the data for cows, the best cows with EBVs 
without adjustment were extracted and 
compared with the same cows from EBVs with 
HV adjustment. The “best” cow was defined as 
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a cow having at least 3 progeny, EBV for milk 
> 1000 and EBV for fat and protein > 50 kg. 
The correlations between EBVs with and 
without adjustments were 0.97, 0.94, and 0.94 
for milk, fat and protein yield, respectively. 
Clearly the adjustment for HV resulted in some 
re-ranking of the cow’s EBVs. The 
correlations were considerably lower 
compared to those for bulls. Again these 
results are consistent with the literature 
findings (Kistemaker and Schaeffer, 1998). 

 

Reliability approximation 
 
The information source method for 
approximating the reliabilities corresponded 
well to the true values derived from the inverse 
of the MME matrix. The results for bulls are 
shown in figure 4. 
 

The mean values for the true and the 
approximate reliability were 27 and 30, 
respectively.  The intercept from the regression  

 
Figure 4. Relationship between true and approximate reliability for bulls. 
 
analysis was 0 and the linear coefficient was 
greater than one and the regression model 
accounts for almost all (96.35%) of the 
variation. 
 

For all cows with records the mean values 
for the true and the approximate reliability 
were 28 and 34, respectively. The intercept 
from the regression analysis was 0.1 and the 
regression model accounts for 92.25% of the 
variation.  
 

For all dams the mean values for the true 
and the approximate reliability were 26 and 28, 
respectively.  In this category of animals the 
results are very similar to those obtained for 
the sires. The intercept from the regression 
analysis was zero and the linear coefficient 
was greater than one, indicating that the higher 
the reliability the more it is overestimated. The 
regression model accounts for (96.34%) of the 
variation.  
 

From these results it is evident that the 
approximate method slightly overestimates the 
higher reliabilities (> 0.5). Similar findings 
were reported by Tier and Meyer (2004). The 

results for the cows with records were not 
unexpected since their reliabilities were based 
only on the inverse of the diagonal block EDC 
matrices. In contrast some of the dams have 
their reliability based on own performance as 
well as the performance of their progeny and 
collateral relatives.   

 
 
De-regression of breeding values 
 
The de-regression procedure used in this study 
adjusts for ancestral information, such that the 
DRP contain only own and progeny 
information on each animal. It also eliminates 
shrinkage contained in the EBVs. The DRP 
have unequal variances and are used in a 
weighted analyses in both ridge regression and 
G-BLUP. The weights used were similar to 
those reported by Garrick et al. (2009). The 
effect of using different EDCs on DGVs was 
evaluated by regressing DGVs on DRPs and 
calculation the average prediction error 
variances from G-BLUP. 
 

The results from the regression analyses for 
Holstein are shown in table 4. 

 

y = 1,0624x + 0,0141 
R² = 0,9635 

0
0,2
0,4
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1
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ap2
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Table 4. Regression of DGV on DRP for Holstein. 
 

RHS for 
DGV 

Trait 
Milk Fat Protein 

𝑏𝑏� 𝑅𝑅2 𝑏𝑏� 𝑅𝑅2 𝑏𝑏� 𝑅𝑅2 
DRP/HJ for 
bulls and 
cows 

1.318 0.531 1.386 0.530 1.309 0.52 

DRP/HJ for 
bulls 

1.401 0.520 0.913 0.628 1.069 0.761 

DRP/HJ for 
cows 

0.985 0.740 1.484 0.537 1.400 0.475 

DRP/RL for 
bulls and 
cows 

1.342 0.670 1.360 0.670 1.280 0.657 

DRP/RL for 
bulls 

1.386 0.678 1.341 0.781 1.326 0.690 

DRP/RL for 
cows 

1.114 0.780 0.960 0.690 1.172 0.790 

DRP/OP for 
bulls and 
cows 

1.294 0.726 1.334 0.684 1.250 0.687 

DRP/OP for 
bulls 

1.011 0.904 0.989 0.842 1.060 0.926 

DRP/OP for 
cows 

1.360 0.717 1.440 0.683 1.330 0.653 

 
The highest R2 for bulls were obtained 

when OP EDCs were used. The regression 
coefficients were 1.011, 0.989 and 1.060 for 
milk, fat and protein yield, respectively. The 
regression coefficients for the HJ and RL 
EDCs were considerably higher than 1.0 and 
ranged from 0.913 to 1.401. The corresponding 
R2 values ranged from 0.520 to 0781. Similar 
picture was observed for the Jersey bulls. 
 

The lowest average prediction error 
variance for Holstein bulls was obtained when 
OP EDCs were used. The average PEVs were 
0.141, 0.145 and 0.141 for milk, fat and 
protein yield, respectively. The corresponding 
figures for Jersey were 0.175, 0.168 and 0.173 
for milk, fat and protein yield, respectively. 
The standard errors for Holstein ranged from 
0.038 to 0.046 and for Jersey the range was 
from 0.064 to 0.066. The average PEVs from 
HJ and RL EDCs were much higher ranging 
from 0.200  to  0.250  with standard deviations  

 
 
 

in the range of 0.066 to 0.091. Similar figures 
were observed for the Jersey breed. 
 

Further evaluation of the predictive ability 
of each approach on the reliability of the 
genotyped validation animals is under way. 

 
 
Conclusion 
 
The multiple-trait multi-lactation test day 
model was successfully implemented for the 
Australian dairy industry. It is an important 
development towards improving the accuracy 
of genetic evaluations, including new 
procedure for reliability calculations and herd-
year-season variance heterogeneity. The de- 
regressed proofs using the final 305 days 
EBVs obtained from EDCs based on own and 
progeny contributions seem feasible for use as 
a phenotypes in the genomic analyses for 
production traits. 
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