
INTERBULL BULLETIN NO. 49. Orlando, Florida, July 09 - 12, 2015 

Accounting for Genotype by Environment Interaction in Genomic 
Predictions for US Holstein Dairy Cattle 

 
F. Tiezzi1, K.L. Parker Gaddis2, J.S. Clay3 and C. Maltecca1 

Department of Animal Science, North Carolina State University, Raleigh, NC, USA 
Department of Animal Science, University of Florida, Gainesville, FL, USA 

Dairy Records Management System, Raleigh, NC, USA 
email: f_tiezzi@ncsu.edu 

_________________________________________________________________________________ 
Abstract 
 
Genotype by environment interaction (GxE) is known as a differential response to changes in 
environmental conditions for individuals with different genetic background. Accounting for this effect 
could help improve genomic prediction for several traits in the dairy industry. We obtained 11,747 
intra-herd-year-season daughters-yield-deviation for milk yield, for a total 482 Holstein bulls. Bulls 
were genotyped with the Illumina 50k Beadchip. Different models were implemented in a Bayesian 
framework to estimate genomic, environment and GxE variance components. Environmental effect 
were defined as 1) the permanent environmental effect of herd-year-season, 2) a double covariate on 
the latitude and longitude of the farm location, 3) multiple covariates for average herd-year-season 
values of maximum, minimum and average daily temperatures, relative humidity, wind speed and 
atmospheric pressure, 4) a triple covariate for management parameters such as number of cows in the 
herd, percentage of Holstein cows, and number of milking times per day, 5) permanent environmental 
effect of the herd. Several models of increasing complexity were tested in a cross-validation scheme. 
Accuracy was measured as the correlation between predicted and observed phenotypic values. Models 
that fitted GxE often presented non-null estimates of variance components for this effect and improved 
predictive ability by 2 to 7%. Our study suggests that the inclusion of GxE would be beneficial for 
genomic predictions. 
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Introduction 
 
Selection programs in dairy cattle have lead to 
large improvement of productive performance 
over the past decades. Breeding values for 
selection candidates are based on phenotypes 
recorded across varying environmental 
conditions for productive, reproductive and 
type traits. The availability of low-cost 
genotyping techniques has led to a remarkable 
increase in the power of prediction of breeding 
values through genomic selection.  
 

Genotype by environment interaction 
(GxE) is a component of phenotypic variation 
that is often neglected in (genomic) breeding 
value prediction models, although several 
authors demonstrated its presence in dairy 
cattle populations. In Australia, Haile-Mariam 
et al. (2008) found GxE for production, 
survival and fertility traits over environments 
defined by different management (herd-size 
and level of production and climatic variables). 

Hayes et al. (2009) discovered regions in the 
genome associated with heat stress 
performance reduction, followed by Dikmen et 
al. (2013) that performed the same analysis in 
a US Holstein cow population. These studies 
suggest that cows will have different tolerance 
to environmental stressors in a manner that is 
determined by their genetic background. In 
Europe, Windig et al. (2011) estimated GxE 
for somatic cell score over different productive 
levels in several strains of Irish dairy cows, 
whereas Streit et al. (2013) and Norberg et al. 
(2014) found GxE for protein yield in German 
Holstein and Danish Jersey, respectively. In 
the United States, Oseni et al. (2004) found a 
moderate GxE for days open in US Holstein 
reared in south-eastern states, and Ravagnolo 
and Misztal (2000) demonstrated that selection 
for reduced heat stress in dairy cattle is 
possible. 

 
What emerges from the investigation of 

GxE is that different environments can often 
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be expressed as one or more continuous 
variables. These can be derived from field 
measures (Ravagnolo and Misztal, 2000) or 
can be inferred with specific algorithms (Su et 
al., 2009). Among all field measures, climatic 
parameters play a significant role in defining 
different environments (Bohmanova et al., 
2008). 
 

Accounting for GxE in prediction models is 
common in plant breeding (Jacquin et al., 
2014; Lopez-Cruz et al., 2015). There is a 
particular need to develop lines that show high 
performance in specific environments; in other 
words, ‘specialist’ genotypes are needed 
(Kassen, 2002). The same need might arise in 
dairy cattle when some environmental 
parameters cannot be (completely) controlled 
(e.g., temperature and humidity). In this case, 
breeders could develop specialist genetic 
material to perform in extremely hot and 
humid environments. On the other hand, 
breeding companies could decide to develop 
robust ‘generalist’ individuals that are capable 
of maintaining constant performance over 
different environmental conditions. This is 
especially relevant in the face of climatic 
changes. 
 

The objective of this study was to estimate 
variance components for genomic, 
environment and genotype by environment 
effects on milk yield of US Holstein cows 
when the ‘environment’ was defined according 
to different descriptors, as well as to test the 
predictive ability of the different models using 
cross-validation.  
 
 
Materials and Methods 
 
Data 
 
Milk yield records 
 
Production records were extracted using 
Format 4 datafiles from the DRMS (Dairy 
Records Management System, Raleigh, NC, 
USA) database. The dataset included test-day 
records for each cow, for a total of 22,593,022 
records on over 1,036,040 cows. Milk yield 
(expressed as kilograms of milk produced per 
day) was analyzed with the following model: 
 

yijklm = μ + parsolmfi + hysj + cowlactkl + 
+ addgenl + eijklm 

 
where yijklm is the milk yield measure, μ is the 
overall mean, parsolmfi is the fixed effect of 
the i-th class defined as parity (4 classes) by 
stage of lactation (40 15-days classes) by 
milking frequency (2 or 3 times per day), hysj 
is the fixed effect of the j-th herd-year-season 
class (HYS, where seasons are defined as 3 
months periods: January to March, April to 
June, July to September, October to 
December), cowlactkl is the random effect of 
the k-th lactation of the l-th cow, addgenl is the 
additive genetic effect of the l-th cow and eijklm 
is the random residual. In order to complete the 
GxE analysis, data had to be organized into 
herd-year-season-daughter-yield-deviations 
(HYS-DYD) expressing the average and 
adjusted performance of a bull’s daughters in a 
given herd-year-season class. HYS-DYD were 
defined as  
 

HYS-DYDnj  = hysj + addgenl + eijklm 
 
and then weighted for the effective daughters 
contributions. After editing, there were 11,747 
HYS-DYD records for 482 bulls and 1,314 
HYS classes from 103 herds. Bulls were 
genotyped with the Illumina 50k Beadchip and 
markers were edited for call rate and minor 
allele frequency. 
 

Historical climate data were downloaded 
from the National Climatic Data Center 
(NCDC) at the National Oceanic and 
Atmospheric Administration (NOAA). Station-
year-season summaries were created after 
quality control and merged to the HYS-DYD 
records using geographical coordinates 
approximated for each herd based on zip codes 
using the R (R Development Core Team, 2014) 
packages “zipcode” (Breen, 2012) and 
“geosphere” (Hijmans et al., 2012). The 
following variables were retained in order to 
characterize the climatic condition of each 
HYS class: average daily temperature, 
maximum daily temperature, minimum daily 
temperature, average daily relative humidity, 
average daily atmospheric pressure, average 
daily wind speed and sum of monthly rainfall. 
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Herd management profile information was 
extracted from Format 4 and consisted of the 
following variables: average number of heads 
in the herd in the year-season period, 
percentage of Holstein cows and number of 
milking times per day (two or three).  
 
 
Statistical models 
 
Data were analyzed with different models and 
variance components were estimated in order 
to assess the impact of each effect. The first 
model (G) accounted for only the genetic 
effect. The model was 
 

yijk = μ + gi + eijk 
 
where yijk is the HYS-DYD, μ is the overall 
mean, gi is the additive genetic effect of the i-
th bull, and eijk is random residual. Effects 
were so defined 
 

eijk ~ N(0, Iσ2
e) 

gi ~ N(0, Gσ2
g) 

 
where G is the genomic relationship matrix 
built on marker information (VanRaden, 
2008).  
 

The second (GL) and third (GLx) models 
accounted for the environmental effect defined 
by the covariates of latitude and longitude on 
the herd and its interaction with the genotype. 
Models were defined as 

 
yijk = μ + gi + lj + eijk 

and 
yijk = μ + gi + lj + glij + eijk 

 
respectively, where lj is the effect of latitude 
and longitude and glij is their interaction with 
genotype, defined as  
 

lj ~ N(0, LL’σ2
l) 

glij ~ N(0, [G°LL’]σ2
gl) 

 
where L is a matrix reporting latitude and 
longitude of the herds and ° indicates the 
Hadamard product of the two matrices. 
 
 

The fourth (GW) and fifth (GWx) models 
accounted for the environmental effects 
defined by all climate covariates and their 
interaction with the genotype. Models were 
defined as 

 
yijk = μ + gi + wj + eijk 

and 
yijk = μ + gi + wj + gwij + eijk 

 
where wj is the effect of climate variables and 
gwij is their interaction with genotype, defined 
as  

wj ~ N(0, WW’σ2
w) 

gwij ~ N(0, [G°WW’]σ2
gw) 

 
respectively, where W is a matrix reporting the 
climate variables. 
 

The sixth (GM) and seventh (GMx) models 
accounted for the environmental effect defined 
by the herd management covariates and their 
interaction with the genotype. Models were 
defined as 

yijk = μ + gi + mj + eijk 
and 

yijk = μ + gi + mj + gmij + eijk 
 
respectively, where mj is the effect of the 
management variables and gmij is their 
interaction with genotype, defined as  
 

mj ~ N(0, MM’σ2
m) 

gmij ~ N(0, [G°MM’]σ2
gm) 

 
where M is a matrix reporting the management 
variables. 
 

The eighth (GH) and ninth (GHx) models 
accounted for the permanent environmental 
effect of the herd and its interaction with the 
genotype. Models were defined as 

 
yijk = μ + gi + hj + eijk 

and 
yijk = μ + gi + hj + ghij + eijk 

 
respectively, where hj is the permanent 
environmental effect of the herd and ghij is the 
interaction with genotype, defined as  
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hj ~ N(0, HH’σ2
h) 

ghij ~ N(0, [G°HH’]σ2
gh) 

 
where H is the matrix for the herd effect (103 
levels). 
 

Analyses were performed using the R 
package BGLR (Perez and de los Campos, 
2014, Jarquin et al., 2014) that implements a 
Gibbs sampler over the eigenvalue 
decomposition of the environmental and 
genomic relationship matrices (Janss et al., 
2012). A unique chain per model was run, 
which included a total of 62,000 iterations with 
2,000 iterations discarded as burn-in and 
thinning every 10 iterations. Convergence of 
the models was assessed by visual inspection 
of trace plots and running post Gibbs analyses 
using the ‘coda’ R package (Plummer et al., 
2006). 

 
 

Cross-Validation 
 
In order to evaluate the predictive ability of the 
models, a cross-validation scheme was 
designed. First, the data were assigned to five 
different macro-regions within the US: Mid-
West, South-West, South-East, North-East I 
and North-East II. The last 2 regions were 
created because a large amount of data came 
from that region. Data were masked according 
to the three following criteria. 
 
 
New bulls 
 
Bulls that had at least 50 HYS-DYD were 
randomly assigned to 4 folds and masked 
successively, simulating bulls that were not 
progeny tested in the US. Models were re-run 
four more times, masking one fold for each 
run. 
 
 
Incomplete progeny testing 
 
Bulls that had HYS-DYD in at least 4 regions 
were selected and randomly assigned to 4 
folds. One region per bull was masked, 
simulating bulls that were progeny tested but 
with daughter information missing for some 
region. 
 

Missing region 
 
Data from each of the five regions were 
alternatively masked. This aimed at simulating 
a validation set where some environmental 
conditions were not found in the training set. 
 
 
Results and Discussion 
 
Variance components 
 
Descriptive statistics for HYS-DYD and 
environmental/management covariates are 
reported in table 1; variance components 
estimates are reported in table 2. 
 
Table 1. Descriptive statistics for milk yield 
and covariates used in the study. 
 Mean SD 
   
Milk yield HYS-DYD, kg 0.0 0.69 
   
Maximum temperature, °C 19.5 9.0 
Minimum temperature, °C 7.8 8.4 
Average temperature, °C 13.8 8.7 
Relative Humidity, % 65.9 7.0 
Pressure, mmHg 744.9 21.9 
Wind Speed, km/h 9.9 3.00 
Rainfall, mm 251.0 103.2 
   
Number of heads, n 940 654 
Percentage Holstein cows 99.4 9.0 
Milking times per day, n 2.76 0.4 

 
Genomic effects accounted for 19.2% to 

56.8% of total variance. The highest values 
were reached in model G when no 
environmental effects were fit, and the lowest 
values were reached when strong 
environmental and GxE effects were fit (GL 
and GLx). Geographical coordinates showed 
small impact (5.4% and 6.2% in GL and GLx) 
but their interaction with the additive genetic 
effect was strong (37.5% in GLx). Climate 
covariates also had a small impact (9.8% and 
6.1% in GW and GWx), while their interaction 
was of larger magnitude (16.8% in GWx). 
Management variables also had a moderate 
effect  (3.7% and  3.6%  in GM and GMx),  yet  
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the interaction with additive effects was strong 
(28.3% in GMx). Herd permanent 
environmental effects had the strongest effects 
(35.4% and 35.2% in GH and GHx) but null 
effect for the interaction with genotype (0.4% 
in GHx). The herd effect accounted for a large 
amount  of  phenotypic   variance,   confirming  

 
milk yield as a trait mainly driven by 
environmental conditions in general. The effect 
of latitude and longitude, which accounts for 
spatial permanent variation between herds, was 
moderate compared to the herd permanent 
environmental effect, suggesting that herd 
location explains little about the 
“environment” that it provides. Climate 
variables explained slightly more variance than 
geographical coordinates. The Management 
variables accounted for little amount of 
variance. The strongest GxE effect was shown 
with the geographical coordinates, followed by 
management and climate variables. Interaction 
between genotype and herd permanent effect 
was almost null.  
 

The geographical, climate and management 
parameters we considered could not explain all 
the variability that exists between herds. There 
are probably other characteristics (peculiar of 
each herd) that could better describe the 
environmental variation. It was also observed 
that the impact of GxE was inversely 
proportional to the direct effect of the 
environment. For instance, the permanent 
environmental effect of the herd has a strong 
impact on the overall performance of cows in a 
given herd and there is no genetic control in 
the within-environment variation of the bulls’ 
daughters. On the other hand, climate has 
moderate impact on the overall performance in 
a given HYS, but cows have different 
capability of coping with different weather 
conditions and this appears to be under genetic 
control. A further speculation could be that 
some environmental conditions accounted for 
by the models GH and GHx would reduce 
GxE, since the environments themselves tend 
to keep all cows at the same productive level 
with no expression of genetic potential to react 
to environmental conditions, e.g., farmers 
adapt diet to the genetic potential of the cow. 
In other words, considering herds as separate 
blocks (i.e. unique combinations of unknown 
characteristics) also accounts for the ability of 

the farmers to keep all cows at the expected 
productive level, while stratifying herds for 
their climatic conditions does not keep all 
cows at the expected productive level. Farmers 
are therefore more capable of managing cows 
individually once management parameters 
have been  set,  rather  than  providing  climate  
conditions that meet specific cow requirement. 
Under these conditions, cows must express 
their genetic potential for coping with climatic 
stressors (e.g. summer heat), but not for 
different management practices across farms.  
 
 
Predictive ability 
 
The number of records masked in the CV 
scheme is reported in table 3, while predictive 
ability of the models is reported in table 4.  
 
Table 3. Number of records masked and their 
proportion on total dataset for each split and 
fold used in the cross-validation (fold 5 for the 
‘missing region’ split, containing 1,993 (17%) 
records, is not shown). 

 Fold 
1 

Fold 
2 

Fold 
3 

Fold 
4 

New bulls 1,021 
(9%) 

1,039 
(9%) 

1,905 
(16%) 

1,373 
(12%) 

Incomplete 
progeny test 

522 
(5%) 

575 
(5%) 

668 
(6%) 

663 
(6%) 

Missing 
region 

2,730 
(23%) 

1,757 
(15%) 

3,064 
(26%) 

1,152 
(10%) 

 
When data from new incoming bulls were 

masked, the models that performed best were 
those including GL and GLx, with an 
advantage of the latter (accuracy of 0.293 vs. 
0.264). The models including GH and GHx 
performed slightly worse than the others (0.24 
and 0.23, respectively), followed by models 
incorporating GM and GMx (0.15 and 0.156) 
and GW and GWx (0.138 and 0.198). The G 
model performed worst (0.065), suggesting 
that environmental conditions are to be taken 
into account if their effect is not removed.  
 

In the ‘incomplete progeny test’ CV 
scheme, models including GH and GHx 
performed best (0.275 for both models), 
followed by model with GL (0.252) and with 
GM (0.158), but their performance declined 
when GxE was included (0.192 and 0.087 GLx 
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AND GMx respectively). Models GW and 
GWx performed moderately (0.148 and 0.205) 
but this was the only case where GxE brought 
an advantage to the performance of the models. 
Again, G showed low performance (0.098).  
 
Table 4. Accuracy (average of the correlation 
between predicted and observed values over the 
folds) of prediction for the different models 
over the different splits used in the cross-
validation. 

Model 
New 
bulls 

Incomplete 
progeny test 

Missing 
region 

G 0.065 0.098 0.124 
GL 0.264 0.252 0.142 
GLx 0.293 0.192 0.06 
GW 0.138 0.148 0.097 
GWx 0.198 0.205 0.106 
GM 0.15 0.158 0.137 
GMx 0.156 0.087 0.09 
GH 0.24 0.275 0.106 
GHx 0.23 0.275 0.097 
 

In the ‘missing region’ CV scheme, again 
all models with GxE performed worse than 
their environment-only counterpart except for 
models with climate variables (0.097 and 0.106 
for GW and GWx, 0.142 and 0.060 for GL and 
GLx, 0.137 and 0.090 for GM and GMx, 0.106 
and 0.097 for GH and GHx). Best performance 
was therefore achieved with models GL, GM 
and G. The reason of the poor performance for 
the models that incorporate GxE could be that 
once the model is trained on a restricted part of 
the country, coefficients for this effect are 
specific for the regions used in the training set 
and do not work for a different region in the 
validation set. The exception of the climate 
variables could confirm this, because these 
variables provide a stronger link between the 
different regions of the country. 
 
 
Conclusions 
 
The inclusion of GxE in genomic prediction 
models can be advantageous, but careful 
investigation of the covariates used is needed. 
The permanent environmental effect of the 
herd shows strong effect but null interaction 
with genotype, and this interaction gives null 
or negative advantage when included in 
genomic prediction models. On the other hand, 

other covariates, such as geographical 
positioning and climate and management 
variables, show interaction with the genotype. 
All covariates bring an advantage in prediction 
only when their entire range is included in the 
training set for each bull. Therefore climate 
variables seem the most promising as they 
always confer an advantage when GxE is 
included in the model. Further research will 
consider different sets of covariates, different 
cross-validation schemes and new traits to be 
included in the analyses.  
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Table 2. Posterior mean of the ratio of variance absorbed by each effect over the total phenotypic 
variance for each model tested on the entire dataset (11,747 herd-year-season-DYDs). 

Model G L GL W GW M GM H GH 
G 56.8 . . . . . . . . 
GL 52.1 5.4 . . . . . . . 
GLx 19.2 6.2 37.6 . . . . . . 
GW 52.6 . . 9.8 . . . . . 
GWx 38.2 . . 6.1   16.8 . . . . 
GM  44.9 . . . . 3.7 . . . 
GMx  27.7 . . . . 3.6 28.3 . . 
GH 37.2 . . . . . . 35.4 . 
GHx 37.2 . . . . . . 35.2 0.4 
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