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Abstract 
 
Millions of sequence variants are known, but subsets are needed for routine genomic predictions or to 
include on genotyping arrays. Variant selection and imputation strategies were tested using 26 984 
simulated reference bulls, of which 1 000 had 30 million sequence variants, 773 had 600 000 markers, 
24 863 had 60 000 markers, and 348 had 12 000 markers. Edits for minor allele frequency (MAF) of 
>0.01, linkage disequilibrium of <0.95 and keeping all 0.5 million variants in or near genes reduced 
the list to 8.4 million, and those were imputed for all bulls. Strategies were compared to choose 
variants most significant or with largest estimated variances or effect sizes for five independent traits 
using single or multiple regression. Reliability of prediction averaged 28.4% from parent average, 
77.8% from 60 000, 80.1% from 600 000, 85.0% from 60 000 plus the best 25 000 selected sequence 
variants or 87.2% using only the 10 000 imputed true quantitative trait loci (QTLs) with no weight on 
the markers. Genome-wide association (GWA) was faster for selecting variants, but multiple 
regressions were more reliable. With many genotyped animals and many data sources, computing 
strategies must efficiently balance costs of imputing, selecting and predicting when millions of 
variants are available. 
 
Key words: genomic evaluation, whole genome sequence, imputation, variant selection 
 
Introduction 

  
Accuracy of genomic predictions can be 
improved by using more markers, including 
markers pre-selected for effects or including 
variants near genes, within genes, predicted to 
affect gene function or known to be causal. 
Nearly 40 million variants have been identified 
from whole genome sequences for >1 500 
bulls, and several strategies to impute and use 
these show potential (Brøndum et al., 2014, 
2015; Druet et al., 2014; Pérez-Enciso et al., 
2015; van Binsbergen et al., 2014a, 2014b). 
Numbers of sequenced animals should 
continue to increase as researchers examine 
more families and costs decline. 
 

Imputing, selecting and predicting effects 
for millions of variants all require efficient 
computation. Direct use of known QTLs or 
selecting variants in or near genes can improve 
reliability of predictions. Strategies to choose 
variants to include on genotyping arrays of 
different densities or in routine predictions 
were developed and compared using simulated 
data for Holstein bulls. Their actual sequences 
from the 1000 Bull Genomes Project (Hayes et 
al., 2014) were not yet available to us at the 

time of this simulation study but have since 
become available. 

 
 

Methods 
 
Sequence variants were simulated for the 
26 984 Holstein bulls in the U.S. reference 
population in December 2014 using their same 
pedigree file of 112 905 animals. The 1 000 
bulls with the most daughters had 30 million 
sequence variants, whereas 773 were reduced 
to 600 000 (600K) markers, 24 863 to 60 000 
(60K) markers, and 348 to 12 000 markers to 
mimic their actual available genotypes. Each 
simulated chip was an evenly spaced subset of 
the previous chip. Breeding values were 
summed for five independent traits from 
effects of 10 000 (10K) loci, using a heavy-
tailed distribution such that the largest effect 
contributed 3 to 13% of genetic variance, the 
largest 10 effects contributed 20 to 34%, the 
largest 100 contributed 57 to 63%, and largest 
1 000 contributed 90 to 93%. 
 

The variant list was initially edited to have 
MAF of >0.01 and to reduce linkage 
disequilibrium. If any of the 350 variants on 
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either side were correlated by >0.95 
absolutely, one variant from each group was 
retained to represent the group. The 600K 
markers were all retained to improve 
imputation, and the 505 210 single nucleotide 
polymorphisms (SNPs) that were within 2 500 
bases of a true QTL were retained to mimic 
bioinformatic selection using gene positions. 
After imputing the 8.4 million edited variants 
for all bulls, GWA chose the most significant 
5 000 variants for five independent traits. 
Simulated phenotypes had reliabilities equal to 
those of the actual bulls in both variant 
selection and genomic prediction. The oldest 
17 896 bulls were the reference population, 
and true breeding values of the 9 088 younger 
bulls were used for validation. 
 

Variants can be selected for highest 
significance test, largest absolute effect or 
genetic variance contributed by the locus, 
which is computed as 2p(1 − p)effect2, where p 
is allele frequency. Selecting those variants 
that contribute the most variance has more 
theoretic appeal and also chooses variants with 
higher MAF, which could help with imputation 
accuracy. Using GWA, significance of each 
variant was tested conditional on neighboring 
variants already included, and then the tests 
were combined for each independent trait into 
an overall significance. The single regression 
model in GWA included pedigree rather than 
genomic relationships. Multiple regression 
requires many iterations to converge, whereas 
GWA can test many variants without iteration. 

 
Genomic predictions from 60K or 600K 

markers were compared to predictions with 
selected markers added using the same 
nonlinear A method of VanRaden et al. (2013). 
To mimic the selection process used to design 
the GeneSeek HD version 1 chip (Wiggans et 
al., 2014), the top 5 000 high-density markers 
for each of five traits were selected, and the 
combined set of 23 600 (24K) selected markers 
after removing duplicates were added to the 
60K markers. To mimic selection on net merit, 
another test selected markers with the highest 
variance averaged across five traits instead of 
selecting top markers for each trait and then 
combining. 

 
Selecting sequence variants should improve 

accuracy more than selecting only markers, but 
the markers must be retained during 

imputation because sequence variants are not 
available for most animals. A bioinformatic 
analysis included the 600K markers plus 
500 000 (500K) sequence variants near genes 
for a total of 1.1 million, similar to the actual 
analysis of Hayes et al. (2014). Another 
analysis tested adding the 10K true QTLs to 
the 60K markers, and an upper limit on 
reliability was obtained using only the imputed 
QTLs in prediction with no prior variance 
assigned to the markers, the parameter of the 
heavy-tailed distribution set to the true 
parameter, and polygenic variance set to 0% 
instead of the 10% in other tests. Even higher 
reliability might be obtained by the more 
costly process of sequencing or re-genotyping 
all reference animals for the QTLs instead of 
using their available marker genotypes to 
impute their sequence variants. 
 
 
Results and Discussion 
 
Edits for MAF and linkage disequilibrium 
removed 3.4 million and 18.4 million variants, 
respectively, which reduced the variant list 
from 30 million to 8.4 million that included the 
600K markers and the 500K bioinformatic 
variants. For the 26.6 million variants with 
MAF of >0.01, maximum absolute correlation 
with a nearby variant averaged 0.96. 
 

Reliability of prediction averaged 28.4% 
from parent average, 77.8% from 60K 
markers, 80.1% from 600K markers or 79.2% 
from the markers selected by GWA from the 
600K-marker chip (Table 1). The reliability 
gain of 2.3 percentage points for 600K vs. 60K 
markers is larger than reported earlier from 
either simulated (0.9) or actual (0.4) genomic 
predictions (VanRaden et al., 2013). The 
previous results led to a conclusion that simply 

Table 1. Reliabilities (%) from parent average 
(PA), 60K markers, 600K markers or 60K plus 
24K markers selected by GWA from the 600K 
chip for five traits. 

Trait PA  60K  60K+24K  600K 
1 24.4  77.9  79.2  80.3 
2 31.2  77.9  79.3  80.1 
3 32.7  78.3  79.5  80.4 
4 23.3  76.6  77.7  78.6 
5 30.4  78.3  80.0  81.2 
Average 28.4  77.8  79.2  80.1 
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adding more markers gave small 
improvements because prior variance for each 
marker was smaller and additional markers 
were imputed rather than directly observed. 
 

Adding 24K markers from the 600K that 
had largest effects from multiple regression 
gave higher reliability by 2.2 percentage points 
than the markers selected by GWA when 
added to the 60K and also 1.3 percentage 
points higher than using all of the 600K 
markers (Table 2), which was consistent with 
previous results from real data (Wiggans et al., 
2014). Selecting markers by effect variance 
was expected to be better than effect size, but 
effect size gave slightly higher reliability (81.4 
vs. 81.2%). The increased MAF should have 
improved imputation accuracy, but only 19% 
of the SNPs were different from the two 
selection strategies. Selecting 23 000 markers 
using an average of the five traits had only 
about 50% of markers in common with the 
other two strategies and gave slightly lower 
reliability than selecting for each trait and then 
combining (81.1 vs. 81.2%). 
 

The bioinformatic analysis of 1.1 million 
sequence variants produced reliability of 
86.4%, much higher than the 81.4% best 
analysis from selecting 600K markers and only 
about 1 percentage point less than the 87.2% 
maximum using just the 10K true QTLs. This 
confirms that selection of variants near genes 
improves accuracy if all genes are known and 
all variation is associated with genes, which is 
in agreement with Pérez-Enciso et al. (2015). 
Including 1.1 million variants in routine 
evaluation or on chips is difficult, but 60K 
markers plus the top 25 000 chosen from the 
1.1 million by multiple regression gave 

reliability of 85.0%. If the 10K true QTLs 
were added to the 60K but not given extra 
prior variance, reliability was only 84.5% 
because too much prior variance was assigned 
to the markers. 

 
Computing resources for each step are 

shown in Table 3. Genotype simulation 
required 56 hr with one processor and 210 GB 
of memory and output a 32-GB file. 
Calculation of linkage correlations among 
neighboring sequence variants and pruning 
those that were highly correlated took 1 hr 
with 10 processors and 27 GB of memory. 
Imputation of 8.4 million variants for 26 984 
bulls required 38 hr with 20 processors and 13 
GB of  memory and output a 220-GB file. 
Selection of variants by GWA required only a 
half hour with 30 processors and very little 
memory. Genomic prediction for 1.1 million 
variants and five traits required 22 hr with five 
processors and 20 GB of memory. 
 
 
Conclusions 
 
Variant selection is needed because routine 
genomic predictions cannot impute and include 
all of the millions of sequence variants for all 
animals. Large gains in reliability are possible 
if the true QTLs can be identified or if 
advanced bioinformatic tools can identify 
regions likely to contain the causative variants. 
Large reference populations are needed in 
either case because individual QTLs have such 
small effects. Testing many individual traits 
gives more power because effects of the QTL 
may be detectable only for a few traits. 
Assigning more prior variance to the QTLs or 
newly selected markers can improve reliability 
when estimating effects, but the markers from 
previous chips must be retained during 
imputation. 

Table 3. Computer resources to select from 30 
million simulated variants for 1000 sequenced 
and 25 984 genotyped bulls. 

Step 
Proc-
essors 

Time 
(hr) 

Memory 
(GB) 

Disk 
(GB) 

Simulate 30 million 1 56 210 32 
Prune linkage 10 1 27 10 
Impute 8 million 20 38 13 220 
Select 25 000 30 0.5 <1 <1 
Predict 1 million 5 22 20 <1 
 

Table 2. Reliabilities (%) for five traits from 
60K plus 24K markers selected from the 600K 
chip by effect size or effect variance or plus 
10K QTLs or from only 10K QTLs (no prior 
variance for markers). 

Trait 
Select effect by 

 
Add 

QTLs  
Only 
QTLs Size  Variance 

1 81.6  81.3  84.6  87.2 
2 81.4  81.2  84.9  87.7 
3 81.3  81.5  85.0  87.8 
4 80.2  79.8  82.9  85.9 
5 82.5  82.2  85.2  87.5 
Average 81.4  81.2  84.5  87.2 
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Computation becomes a limiting factor as 
reference populations and target populations 
grow in size. Total computing time was only a 
few days with 1 000 sequences and 26 984 
bulls, but 150,000 reference cows were not 
included. Multiple regressions used for 
genomic prediction were more accurate than 
GWA for selecting variants but required much 
more computation. Imputation allows many 
more sequence variants to be tested, selected 
and included in routine predictions. The same 
methods tested here will be applied to select 
variants using the actual sequences and U.S. 
phenotypes. 
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