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Abstract 
 

Methods of selecting sequence variants were compared using candidate sequence variants within or near 

genes for 444 Holsteins from run 5 (July 2015) of the 1000 Bull Genomes Project. Test 1 included single 

nucleotide polymorphisms (SNPs) for 481,904 candidate sequence variants within or near genes. Test 2 

also included 249,966 insertions and deletions (indels). After merging sequence variants with 312,614 

high-density (HD) SNPs and editing, Test 1 included 762,588 variants and Test 2 included 1,003,453. 

Imputation quality from findhap was assessed by keeping 404 of the sequenced animals in the reference 

population and randomly choosing 40 animals as a test set. Their sequence genotypes were reduced to 

the subset in common with HD genotypes and then imputed back to sequence. Predictions were tested 

using HD imputed genotypes for 26,970 progeny-tested bulls and 2015 data of 3,983 validation bulls 

with daughters that were first phenotyped after August 2011. Percentage of correctly imputed variants 

averaged 97.2% across all chromosomes in Test 1 and 97.0% in Test 2. Prediction reliability improved 

only 0.6 percentage points in Test 1 when sequence SNPs were added to HD SNPs and was only 0.4 

points higher than HD SNPs in Test 2 when sequence SNPs and indels were included. However, 

selecting the 16,648 candidate SNPs with largest estimated effects and adding those to the 60,671 SNPs 

used in routine evaluations improved reliabilities by 2.7 percentage points (67.4% vs. 64.7%) on average 

across traits compared with 35.2% for parent average reliability. Thus, genomic prediction reliabilities 

can improve when adding selected sequence variants. 

 

Key words: genomic prediction, reliability, sequence variant, whole genome sequencing 

 

Introduction 
 

Accuracy of genomic predictions can be 

improved by using more variants, including 

variants pre-selected for effects, or including 

variants near genes, within genes, predicted to 

affect gene function, or known to be causal. Past 

analyses often gave equal weight to evenly 

spaced markers, whereas new analyses can 

focus on potential quantitative trait loci (QTLs) 

or preselected variants more closely linked to 

the QTLs. Nearly 40 million variants have been 

identified from whole genome sequence (WGS) 

data for >1,500 bulls, and several strategies 

show potential for imputing these variants to 

additional animals and using them in genetic 

evaluation for economic traits (Brøndum et al., 

2014, 2015; Druet et al., 2014; van Binsbergen 

et al., 2014, 2015; Pérez-Enciso et al., 2015; 

Calus et al., 2016; MacLeod et al., 2016). 

Candidate variants can be targeted to specific 

traits such as genes related to fertility, thereby 

improving reliability for daughter pregnancy 

rate  by  0.20 percentage  points  when  39  SNPs  

were added to the marker set used for genomic 

prediction (Ortega et al., 2016). Numbers of 

sequenced animals should continue to increase 

as researchers examine more families and the 

costs of generating data continue to decline. 

 

Imputing, selecting, and predicting effects 

for millions of variants and many thousands of 

individuals requires efficient computation 

(VanRaden and O’Connell, 2015). 

Computational costs proportional to the number 

of variants multiplied by individuals could 

exceed the marginal benefits from adding more 

variants. Variants in or near genes should 

improve reliability of predictions, and direct use 

of causal variants is preferred to using linked 

markers. Strategies to choose variants to include 

on genotyping arrays of different densities or in 

routine predictions were developed and 

compared using simulated data for Holstein 

bulls. The research reported here examined 

simulated data first and then actual sequence 

genotypes from the 1000 Bull Genomes Project 

(Hayes et al., 2014). 

 



INTERBULL BULLETIN NO. 50. Puerto Varas, Chile, October 24 - 28, 2016 

 

59 

The goals of this study are to 1) compare 

reliability of prediction from sequence data, 

array data, combined data, and different variant 

types and 2) investigate edits, imputation, and 

computing strategies efficient for even larger 

genotyped populations. 

 

  

Methods 
 

The SNP and indel calls (sequence variants) 

from run 5 of the 1000 Bull Genomes Project 

(Daetwyler et al., 2014) were released in July 

2015. Sequence variants for 444 Holstein 

animals and HD imputed genotypes for 26,970 

progeny-tested Holstein bulls were combined 

by imputation using findhap (version 3; http:// 

aipl.arsusda.gov/software/findhap/). Total 

numbers of variants identified in run 5 were 38 

million SNPs and 1.7 million indels, but many 

of those variants are monomorphic within the 

Holstein breed. The indels had an average 

length of 3 and a maximum length of 86. 

Imputed sequence genotypes from the 1000 

Bulls data were set to missing if none of the 

three genotype probabilities (AA, AB, or BB) 

were >0.98 as estimated by Beagle (Browning 

and Browning, 2007). 

 

The HD genotypes of 2,394 Holsteins 

mainly from North America, Italy, and the 

United Kingdom were used to impute 

genotypes of 590,363 other Holsteins that had 

genotypes from 50K or lower density chips. The 

imputed HD genotypes of bulls used in this 

study were a subset of those animals. The 

original 777,000 HD markers were reduced to 

312,614 by removing highly linked markers and 

other edits before imputation with findhap 

(version 3). To verify direction and consistency 

of allele codes, genotypes called from 

sequences were matched to corresponding chip 

markers for 155 Holstein or red Holstein 

animals that had chip genotypes imputed in the 

U.S. database and sequences in the 1000 Bull 

Genomes database. 

 

Variants with a minor allele frequency 

(MAF) of <0.01, incorrect map locations, 

excess heterozygotes, or low correlations of 

sequence and HD genotypes for the same 

variant were removed. After merging sequence 

and    HD   data,   Mendelian   conflicts   between  

 

parents and progeny were set to missing for 

0.01% of genotypes. The percentage of 

conflicts was expected to be small because both 

the HD and sequence genotypes had been 

previously edited. About 1% of the HD imputed 

genotypes were unknown in the findhap output, 

and allele frequencies were substituted for those 

when used in genomic prediction. All HD 

markers that were also in the sequence data 

were kept except in cases where the absolute 

correlation among HD markers was <0.95. This 

edit removed <1,000 (0.3%) of the HD markers 

because a similar edit had previously been 

applied before imputation (VanRaden et al., 

2013). A few hundred sequence variants were 

removed in specific regions already known to 

be mapped incorrectly in UMD3.1. 

 

Three different variant sets were imputed, 

testing the use of candidate SNPs (Test 1), 

candidate SNPs and indels (Test 2), or also 

including intergenic and intronic variants (Test 

3).  The initial sequence genotype edits used in 

Tests 1 and 2 were revised in Test 3 because 

imputation accuracy decreased when millions 

of intergenic and intronic variants were 

included. The VCF file contains three genotype 

probabilities from Beagle, and the edit for Tests 

1 and 2 simply took any genotype with 

probability of >0.98. The new edits used a 

probability of >0.95, and after extracting data, a 

second edit improved input data quality across 

individuals by deleting any variant with >5% 

missing genotypes for low frequency variants 

(<10% MAF) or >MAF/2 missing for more 

common variants. A third new edit for Test 3 

deleted variants with more than 1.5 of the 

expected 2p(1  p) heterozygotes. Only 

3,148,506 variants remained after these edits 

that were added to improve imputation accuracy 

for all samples. 

 

Quality and orientation of calls were 

examined using 179 bulls that had both 

sequence and HD genotypes. After reversing 

the orientation of HD markers to match 

sequence and keeping the sequence instead of 

the HD genotypes for animals that had both, the 

two data sets were combined for a total of 

27,235 animals. Imputation quality was 

assessed by keeping 404 of the sequenced 

animals in the reference population and 

randomly   choosing  40  animals   as  a  test  set.  

 

http://aipl.arsusda.gov/software/findhap/
http://aipl.arsusda.gov/software/findhap/
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Their sequence genotypes were reduced to the 

subset in common with HD markers and then 

imputed back to sequence. The percentage of 

imputed genotypes that matched the original 

genotypes was the simple measure of success. 

  

Genomic predictions were computed using 

deregressed evaluations from August 2011 for 

33 traits and 19,575 bulls. Predictions were 

tested using later data of 3,983 bulls with 

daughters that were first phenotyped after 

August 2011. Test 1 combined 481,904 

candidate sequence SNPs with HD genotypes 

for 312,614 markers and a total of 762,588 

variants. The candidate variants included 

107,471 exonic, 9,422 splice, 35,242 

untranslated regions at the beginning and 

ending of genes, 254,907 within 2 kb upstream, 

and 74,862 within 1 kb downstream variants for 

a total of 481,904 candidate variants based on 

Ensembl gene annotation. Test 2 also included 

any indels located between 2 kb upstream and 1 

kb downstream. Test 3 imputed data were used 

only for genome-wide association (GWA) 

because genomic predictions converged too 

slowly with >3 million variants, and GWA 

results from actual data will be reported in a 

separate article. 

 

A subset of variants were selected for 

potential use in a routine genomic prediction 

using methods similar to those used previously 

to select HD markers with largest effects in the 

national evaluation (Wiggans et al., 2016). The 

16,648 sequence variants with the largest 

effects were selected from the analysis of 

762,588 and added to the 60,671 markers used 

previously. However, 6,584 of those previously 

used markers were not present in the sequence 

data and were not included in the final set of 

70,735 tested.  

 

 

Results and Discussion 

 

Sequence Variants 

 

Edits for sequence variants are documented in 

Table 1. Twenty million of the initial 39 million 

variants were removed for low MAF, and 

another 13 million were removed because of 

high linkage with neighboring variants. Further 

edits in Tests 1 and 2 retained only the HD 

markers, candidate SNPs, and candidate indels. 

In Test 3, 3 million of the remaining variants 

with lower genotype probabilities were 

removed to improve imputation accuracy.  

 

Only 91% of the 60,671 markers currently 

used in official U.S. evaluations were present in 

sequence data. Some markers with low MAF 

might be expected to be missing, but the 

average MAF of the 9% that were missing and 

the 91% that matched were both about 0.28 for 

Holsteins. The missing markers are evenly 

scattered across the chromosomes and probably 

do not indicate reference genome 

misassemblies but are likely due to edits during 

variant identification (Daetwyler et al., 2014). 

The individual correlations of HD with 

sequence genotypes were mostly near +1 or 1, 

which indicates good quality for the 91% of HD 

markers present in the sequence data. About 

half of the genotypes had opposite allele coding 

compared to the sequence variant calls because 

variants in sequence data were coded based on 

differences from a Hereford cow-derived 

reference genome, whereas a preset Illumina 

array manifest file was used for array allele 

coding. 

 

The percentage of variants correctly imputed 

in Test 1 averaged 97.2% of 762,588 across all 

chromosomes, with a maximum of 98.5% for 

BTA20 and BTA22 and minimums of 94.9% 

for BTA15 and 95.0% for BTA4 (Figure 1). The 

X chromosome was split into the pseudo-

autosomal region (labelled as BTA30) with 

poor imputation) and the X-specific loci 

(labelled as BTA31); no Y loci were present. 

Imputation accuracy was slightly reduced to 

97.0% with the 1,003,453 variants including 

indels in Test 2 and to 96.7% with the 3,148,506 

variants including intronic and intergenic 

variants in Test 3. These percentages are 

inflated because they include the HD markers 

that were already present. The low imputation 

accuracy for chromosome 12 in Test 3 was 

mainly caused by a gap from 72.4 to 75.2 Mb 

where no markers were available from the HD 

 

Table 1. Edits applied to actual data in Test 3 

Edit category Millions 

Original number of SNPs called 39 

Removed for MAF of <0.01 20 

Removed for linkage of >0.95 13 

Removed for imputation accuracy 3 

Remained after edits 3 
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array. Total time required to prepare, edit, and 

impute the 762,588 variants for 27,235 animals 

ranged from 1 to 5 hours per chromosome 

(Table 2) and about 5 days for all 30. Data 

manipulation steps such as transposing the 

sequence data and merging with HD data used 

1 thread and took more time than the 

imputation, which used 20 threads and took <1 

day. 

 

Reliability of predictions improved only 0.6 

percentage points on average using the 762,588 

sequence variants and HD data compared with 

using HD data only (Table 3). Inclusion of 

indels decreased the advantage over HD to only 

0.4 percentage points. Compared with the 

60,671 SNPs used currently, reliability 

improved by about 2.7 percentage points for the 

final set of 70,735 variants, which included the 

60,671 minus the 6,584 not included in the 

sequence data plus the 16,648 sequence variants 

selected with largest effects. Reliabilities were 

35.2% from parent average, 64.7% from 60,671 

SNPs, 67.4% from 70,735 variants, 64.0% from 

HD SNPs, 64.6% from HD plus genic SNPs, 

and 64.4% from HD plus genic SNPs and 

indels. The 60,671 already included the best 

SNPs selected from HD SNPs (Wiggans et al., 

2016), which may explain why 60,671 slightly 

outperformed HD. 

 

For use with lower density genotyping arrays 

(5K), the 16,648 sequence variants were further 

restricted to 4,822. Hand edits were applied to 

prevent too many candidate SNP from all 

tagging the same QTL. Figure 2 provides an 

example for chromosome 5 of the SNPs kept 

and removed. The same list of 4,822 SNPs was 

provided to Zoetis (Florham Park, NJ), 

GeneSeek (Lincoln, NE), and Genetic Visions 

(Middleton, WI) for potential inclusion on 

revised arrays. The benefits of adding the 

sequence SNPs directly to lower density rather 

than only to medium or higher density arrays 

are to genotype more young animals quickly 

and to avoid imputation loss when including 

sequence SNPs in routine predictions. Re-

genotyping or sequencing more reference 

animals could also help avoid imputation loss in 

SNP effect estimation for newly discovered 

variants. 

 

Figure 1. Accuracy by chromosome of 

imputing sequence variants for 762,588, 

1,003,453, and 3,148,506 variants in three tests. 

Chromosome 30 refers to the pseudo-autosomal 

region of X, and 31 refers to X-specific loci. 

 

 

Table 2. Time (minutes) required with actual 

sequence data to complete each computational 

step for longest (BTA1) and shortest (BTA29) 

chromosomes. 

Step BTA1 BTA29 

Unzip VCF files 6 2 

Read and transpose sequence 95 36 

Subset sequenced animals 1 1 

Subset matching HD markers 8 10 

Merge sequence and HD 143 6 

Compute sequence linkage 3 1 

Subset edited variants 3 1 

Fix Mendelian conflicts 3 1 

Impute with edited data 16 10 

Reduce some sequence to HD 1 1 

Impute with reduced data 17 9 

Total time 296 78 

 

 

 

Figure 2. Example variants selected from 

chromosome 5; only those with larger effects 

were kept in windows containing the largest 

effects. 
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Comparison with Previous Studies 

 

Previous studies used 5,000 bulls with HD 

SNPs and 10 million variants from run 3 

sequence data (van Binsbergen et al., 2015) or 

4 million variants from run 4 (Calus et al., 

2016), but sequence predictions in those studies 

had slightly lower reliability than predictions 

from HD genotypes only or from BovineSNP50 

genotypes only. The HD genotypes in those 

studies were all observed, but HD genotypes 

used in our study were mostly imputed. Use of 

sequence data from run 3 or 4 instead of run 5 

could explain their small negative instead of 

positive gains. The similar results from their 

studies and ours suggest that errors in the 

sequence data variants or remaining reference 

assembly mistakes that altered the order of 

variant sites in the sequence data could account 

for the small changes in reliability of prediction.  

 

Our results indicate that adding selected 

sequence variants can be useful in routine 

prediction even if analysis of all variants is not 

more accurate or feasible, which is consistent 

with previous conclusions for sequence data 

(Brøndum et al., 2015) or HD data (Saatchi and 

Garrick, 2014; Wiggans et al., 2016). Brøndum 

Table 3. Reliability gains (percentage points) over parent average (PA) when adding actual sequence 

variants to HD or to 60,671 SNPs.  

Trait 

HD + candidate SNPs  60,671 markers + selected SNPs PA 

reliability 

(%) 

HD + 

indels 

HD 

only 

HD + 

481,904 

Differ-

ence 

60,671 

only 

60,671 + 

16,648 

Differ-

ence 

Milk 34.1 33.9 0.2  34.3 35.7 1.4 37.9 33.9 

Fat 33.7 34.0 0.3  34.3 35.1 0.8 37.9 33.4 

Protein 27.9 27.0 0.9  27.5 28.2 0.7 37.9 26.7 

Fat percentage 49.2 52.7 3.5  52.9 54.8 1.9 37.9 52.4 

Protein percentage 42.1 41.6 0.5  41.6 44.3 2.7 37.9 43.0 

Productive life 36.1 35.8 0.3  35.6 38.2 2.6 32.0 36.4 

Somatic cell score 35.9 36.1 0.2  35.1 37.0 1.9 34.7 37.1 

Daughter pregnancy rate 30.8 30.0 0.8  29.0 33.0 4.0 31.5 31.2 

Cow conception rate 28.7 28.1 0.6  28.9 31.8 2.9 29.8 28.8 

Heifer conception rate 19.0 20.3 1.3  20.5 21.5 1.0 30.0 19.7 

Sire calving ease 27.8 27.7 0.1  24.5 28.5 4.0 29.9 25.2 

Daughter calving ease 32.5 30.8 1.7  31.5 31.4 0.1 25.3 29.9 

Sire stillbirth 7.6 7.3 0.3  7.6 7.8 0.2 29.0 7.1 

Daughter stillbirth 37.4 37.0 0.4  35.4 38.0 2.6 23.8 35.8 

Final score 24.7 25.5 0.8  24.6 27.8 3.2 36.2 25.8 

Stature 30.4 32.4 2.0  30.3 34.7 4.3 38.2 32.8 

Strength 29.9 31.8 1.9  29.9 34.5 4.6 37.4 31.8 

Dairy form 33.8 35.3 1.5  35.0 38.2 3.2 37.4 35.8 

Foot angle 17.3 17.6 0.3  17.2 19.6 2.4 36.7 18.2 

Rear legs (side view) 21.9 22.7 0.8  22.1 24.1 2.0 37.3 22.0 

Body depth 31.0 33.1 2.1  31.2 36.0 4.8 37.6 33.7 

Rump angle 32.7 34.0 1.3  32.9 36.1 3.2 37.8 33.5 

Rump width 29.2 30.4 1.2  29.1 32.5 3.4 37.1 30.2 

Fore udder attachment 35.1 36.4 1.3  35.0 39.0 4.0 37.5 36.1 

Rear udder height 24.7 25.7 1.0  24.1 27.3 3.2 37.3 25.8 

Udder depth 40.2 42.6 2.4  40.6 44.6 4.0 38.0 42.8 

Udder cleft 23.7 24.5 0.8  23.6 25.5 1.9 37.1 24.0 

Front teat placement 32.6 33.4 0.8  30.9 35.0 4.1 37.6 32.3 

Teat length 29.0 30.3 1.3  28.0 32.7 4.7 37.7 29.9 

Rear legs (rear view) 20.7 20.3 0.4  20.4 22.8 2.4 36.0 20.1 

Feet and leg score 16.9 16.5 0.4  15.9 18.3 2.4 36.4 16.6 

Rear teat placement 33.1 33.6 0.5  32.9 35.2 2.3 37.4 32.1 

Net merit 23.8 24.3 0.5  23.4 24.7 1.3 34.4 24.4 

Average 28.8 29.4 0.6  29.5 32.2 2.7 35.2 29.2 
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et al. (2015) added 1,623 sequence variants 

selected by GWA from multiple breeds to a 

custom chip and reported average reliability 

gains of about 2 percentage points. Small 

improvements (0.2 points) from adding SNPs 

located in genes associated with fertility were 

observed by Ortega et al. (2016), which is 

consistent with gains reported in this and earlier 

studies (VanRaden et al., 2013). Using 

sequence data and giving extra weight to 

candidate variants can improve predictions 

across breeds (Iheshiulor et al., 2016; MacLeod 

et al., 2016; van den Berg et al., 2016a, 2016b), 

but advantages of focusing on candidate 

variants decrease if not all QTLs are in the 

variant set (Pérez-Enciso et al., 2015). Multi-

trait methods can detect QTLs that single-trait 

methods might miss (Pausch et al., 2016), and 

even uncorrelated traits can help separate QTLs 

from markers if many independent traits are 

controlled by a limited number of QTLs. 

 

Linkage disequilibrium and MAF 

distributions in the 1000 Bull Genomes 

sequence data are shown in Figures 3 and 4, 

respectively. Edits for MAF and for high 

linkage disequilibrium reduced the 39 million 

actual variants to 6.3 million (Table 1). Our 

edits were similar to those of Calus et al. (2016), 

who obtained 4.1 million variants from Holstein 

data in run 4.  

 

Reliability gains from actual sequence data 

were higher than previous gains reported from 

HD data. Larger gains may be possible if the 

selected SNPs are added to highly accurate 

arrays and genotyped directly instead of 

imputed from less accurate sequence data. 

Accuracies of genotypes from sequence variant 

calling can vary (Baes et al., 2016), whereas the 

error rate of Illumina BeadChip arrays is <1% 

for nearly all SNPs. 

 

 

Computation 

 

Most computing steps in Table 2 were 

programmed in Fortran for efficiency, but 

several steps were in SAS for convenience. The 

SAS program to merge sequence and HD data 

took only 6 minutes for the shortest 

chromosome but 143 minutes for the longest; 

this program could be rewritten because it 

became a limiting step. Total times required for 

Tests 2 and 3 were only a little longer than those 

shown for Test 1 because imputation took a 

small fraction of total time. Larger populations 

or variant sets can be imputed, but genomic 

predictions then become the limiting step. More 

research is needed on how to accurately and 

efficiently select the best subset of variants for 

routine use. 

 

  

Economic Benefit 

 

Increasing the reliability of selection by 2.7 

percentage points from 64.7 to 67.4% would 

add about $3 million per year to national genetic 

progress, plus additional progress globally for 

foreign breeders that directly use the new 

genotyping arrays or that indirectly benefit by 

selecting breeding stock from the improved 

U.S. population. Domestic progress is now 

about $50 per cow annually and would increase 

to $51 after multiplying by the accuracy ratio of 

1.02 which equals the square root of the 

reliability ratio (67.4/64.7). This higher 

 

 

Figure 3. Maximum correlations with 

neighboring variants in the sequence data. 

 

 

Figure 4. Cumulative distributions for MAF in 

the sequence data. 
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accuracy has an annual national value of about 

$3 million because each year 3.3 million of the 

9.2 million U.S dairy cows are replaced, and 

these annual gains are permanent and will 

accumulate. The initial cost of generating the 

U.S. sequence data for the 88 dairy bulls 

contributed to the 1000 Bull Genomes Project 

was $132,000 at current reagent costs (~$1,500 

per sample). The return on investment from this 

research is high and greatly increased because 

of data sharing. 

 

New animals will be directly genotyped for 

the selected variants and thus could have 

slightly higher reliability gains than these tests 

using imputed data, but most reference animals 

will still have imputed data. Re-genotyping old 

animals with the new arrays might be less 

expensive than more sequencing to improve 

imputation accuracy. 

 

 

Conclusions 
 

Variant selection is needed because all of the 

millions of sequence variants for all animals 

cannot be imputed and included in routine 

genomic predictions. Large gains in reliability 

are possible if the true QTLs can be identified 

or if bioinformatics methods can choose regions 

more likely to contain causative variants. Large 

reference populations are needed in either case 

because individual QTLs have such small 

effects. Testing many individual traits gives 

more power because effects of each QTL may 

be detectable only for a few traits, but these 

same QTLs often affect several correlated traits. 

Assigning more prior variance to the QTLs or 

to the newly selected variants can improve 

reliability when estimating effects, but the 

markers from previous arrays must be retained 

during imputation because genotypes of 

previous animals include only the markers and 

not the new variants. 

 

Computation becomes a limiting factor as 

reference populations and target populations 

grow in size. Total computing time was only a 

few days with up to 1000 sequences and 

<30,000 reference bulls, but >150,000 reference 

cows and >800,000 young animals were not 

included. Multiple regressions used for 

genomic prediction were more accurate than 

GWA for selecting variants but required much 

more computation. Imputation allows many 

more sequence variants to be tested, selected, 

and included in routine predictions to increase 

their reliability. Gains from selecting and 

including candidate sequence variants were 

larger than from selecting HD markers. 
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