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Abstract 

 

Using de-regressed breeding values (DRPs) from the routine genetic evaluations for resistance to bovine 

tuberculosis (bTB), genomic evaluation was undertaken model with a reference and validation 

populations of 1,700 and 537 bulls, respectively, genotyped with the Illumina 50Kchip.  The validation 

set of 537 bulls (VAL1) resulted from using a cut off birth year of 2007.  In an attempt to equate infection 

rate in the validation data set to that in the reference, two additional validation data sets were created 

based on sample of the first 30 bulls with reliability >=89 in the reference set plus all bulls in VAL1 

with the same level of reliability (VAL2) and a third validation set (VAL3) made up of a random sample 

of the first 30 bulls with reliability >=93 in the reference set plus all bulls in VAL1 with the same level 

of reliability.  The models used for the analyses included SNP-BLUP and BayesCpi and a single-step 

(ssGBLUP) which was based on phenotypic observations. Different levels of polygenic effects were 

investigated and their impact on SNP effects for SNPs with different allele frequency.  The accuracy of 

evaluations from the SNP-BLUP based on the correlation between genomic breeding values in the 

validation set and individual daughter deviations  (IDD) for bulls was 0.20 with no polygenic effects in 

the model. A similar estimate was from BayesCpi.  However, the estimates of accuracies increased with 

increasing levels of polygenic effects with values of 0.24 at 30% polygenic effects for SNP-BLUP.  

However, the estimates of accuracy from ssGBLUP were much higher at 0.48 or 0.54 at 0% or 30% 

polygenic effect. The use of VAL2 and Val3 generally increased the accuracy of genomic prediction for 

SNP-BLUP and BayesCpi but had very little impact in ssGBLUP. Fitting a polygenic effect in the model 

does not have a uniform impact on the estimates of SNP effects but its influence is dependent on the 

allele frequency of the SNP. 

 

Key Words:    bovine tuberculosis, SNP-BLUP, BayesCpi, ssGBLUP, polygenic effect  

 

Introduction 
 

Bovine tuberculosis (bTB) is a chronic bacterial 

disease of cattle caused by Mycobacterium 

bovis (M. bovis) infection primarily involving 

the respiratory tract. It is endemic in the UK and 

other countries, and presents a significant 

challenge to the UK cattle sector. The 

Department for Environment, Food and Rural 

Affairs (DEFRA) lists bTB as one of the four 

most important livestock diseases globally, 

incurring annual costs of about £175 million in 

the UK (Abernethy et al., 2013). Routine 

genetic evaluation for resistance to bovine 

tuberculosis (bTB) has been implemented in the 

UK since January 2016.  Infected animals were 

classified  as  those  with  a  positive skin test or  

 

 

negative skin test but with a positive post–

mortem examination result.  It is trait with a low 

heritability of about 0.09 and from the 

breakdown model (Banos et al., 2016) officially 

implemented, only about 22% of the 19315 

sires represented in the data had a reliability of 

at least 50%.  However, genotypic data is 

available of the some of the sires in the bTB 

conventional evaluations and incorporation of 

this information might result in an increase in 

the reliability of both proven and young bulls.  

This study therefore examines the application of 

genomic models for the incorporation of 

genotypic data to assess their impact on the 

accuracy of evaluations. In addition the impact 

of different levels of polygenic effects in the 

model on SNPs of different frequencies is also 

examined. 
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Materials and Method 
 

De-regressed sire proofs were computed from 

evaluations of the UK official July 2016 run for 

bTB for 2232 bulls with at least 10 daughters, a 

reliability of 40% and have genotypes.  The 

SNPs equivalent to the 50K Illumina chip were 

extracted for bulls which were genotyped with 

High density chip while those genotyped with 

low density chips were imputed to the 50K chip. 

Genomic evaluations were undertaken using 

these bulls and a SNP-BLUP model and 

BayesCpi. The bulls genotyped were born from 

1990 to 2011. 1695 bulls born before 2007 were 

used as the reference population to estimate the 

SNP effects while 537 bulls born on 2007 and 

afterwards were included in the validation set 

(VAL1).  However, most of the bulls in the 

validation set where with reliabilities of 65% or 

less compared with most reference bulls with 

reliabilities of 80% or more. This reflects the 

fact that the exposure time of the progeny of the 

younger bulls in the validation is much lower 

compared to those in the reference set; therefore 

the rate of infection between both sets is 

different.  This makes validation on younger 

bulls with limited reliability and limited 

exposure to the disease more difficult. This 

implies that the validation data set based on cut 

off year may not be optimum in computing the 

accuracy of prediction in this situation. 

Therefore the use two additional validation sets 

were also investigated. The second validation 

set (VAL2) was created by a random sample of 

the first 30 bulls with reliability >=89 in the 

reference set plus all validation bulls with the 

same level of reliability; this resulted in 1888 

and 344 bulls in reference and validation 

respectively. Finally a third validation set 

(VAL3) was created by a random sample of the 

first 30 bulls with reliability >=93 in the 

reference set plus all validation bulls with the 

same level of reliability; this resulted in 2014 

and 214 bulls in reference and validation 

respectively. 

 

A total of 43143 SNPs were selected for 

genomic evaluations after the usual SNP quality 

edits. The statistical model used for the 

estimation of SNP effects is: 
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where yi is the de-regressed proof of a bull, μ is 

the overall mean, vi is the residual polygenic 

effect (10% of additive genetic variance) of ith 

bull, z is the genotype value coded as 0 and 2 

for the homozygotes and 1 for the heterozygote, 

ui is the random regression coefficient for jth 

SNPj and ei is the residual effect. Analyses were 

also carried out assuming four levels of 

polygenic effects (0%, 10%, 20%, and 30%) 

and results were compared. The same model 

was fitted BayesCpi with but with no polygenic 

effect included.  

 

In addition, ssGBLUP analysis was also 

undertaken with 934987 cows with phenotypic 

records for bTB fitting the model of Banos et al. 

2016.  Briefly, the model fitted was: 

 

𝑌𝑖𝑗𝑘𝑚𝑛 = µ + 𝐵𝑖 + 𝑅𝑗 ∙ 𝑀𝑘 + 𝐿𝑚 + 𝑏1𝑑𝑢𝑟 +

 𝑏2𝑎𝑔𝑒 + 𝑏3𝑝ℎ𝑜𝑙 + 𝐴𝑛 + 𝑒𝑖𝑗𝑘𝑚𝑛      (1) 

 

where Y= bTB infection status record of animal 

n in breakdown i (0/1); µ= population mean, B 

= fixed effect of the breakdown I; R∙M  = fixed 

effect of the interaction between calendar year j 

and month k of breakdown onset; L = fixed 

effect of lactation number m (m=1 for 

primiparous cows, 2 for multiparous cows); dur 

=  linear regression on duration of the 

breakdown (b1=regression coefficient); age = 

linear regression on age of animal at breakdown 

onset (b2=regression coefficient); phol = linear 

regression on percentage of Holstein genes of 

the animal (b3=regression coefficient); A = 

random additive genetic effect of animal n 

including pedigree ; e = random residual. 

 

A total of 5435 sires of these cows had 

genotypes, therefore a G matrix was computed 

for these sires from the genotypes using 

VanRaden (2008) method one.  The G22 matrix 

was then computed as G22 = (1-w) G + wA22, 

with w set at 4 levels of 0, 10, 20 and 30%.   The 

H-1 was then computed for cows and bulls 

incorporating the G22 for the genotype animals.   

The same set of 537 validation bulls were used 

and  the  47616  observations for their daughters  
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were set missing. The accuracy of evaluations 

were computed as the correlation between the 

GEBVs of the validation bulls and the mean of 

the bull individual daughter deviations (IDD-; 

yield of daughters corrected for all effects 

include half of dam breeding value) or de-

regressed proofs. 

 

Usually, the inclusion of polygenic effects is 

mainly to account for the fact that SNPs may not 

account for all genetic variance of the traits. 

However, it is not clear whether varying levels 

of polygenic effect will have proportionate 

effects on all SNPs independent of their allele 

frequencies.  In order to investigate the effect of 

differing levels of polygenic effect on SNP 

solutions of varying allele frequencies, SNPs 

were classified into 5 levels based on the allele 

frequencies. These were 0.05-0.10, 0.11-0.40, 

0.41-0.70, 0.71-0.90 and > 0.90.  The mean 

SNP solutions from models with different levels 

of polygenic effects were computed and 

compared.  

 

The software MiX99 (Lidauer et al., 2014) 

was used for the de-regression, SNP-BLUP and 

the ssGBLUP00 analyses. The BayesCpi 

software used was developed in-house as 

described in Mrode (2014). 

 

 

Results and Discussions 
 

The accuracies of genomic evaluation estimated 

from the different models are presented in 

Figure 1. The accuracies from the SNP-BLUP 

model when no polygenic effects was fitted was 

about 0.20  and was very similar to  the value of 

0.22  obtained from BayesCpi.  The estimate of 

π obtained from the analysis was 60%, 

indicating a high proportion of SNPs seems to 

have little or no effect on bTB. A subsequent 

analysis using BayesCpi with the value of π 

fixed at 30% resulted in a similar estimate of 

accuracy and a correlation of about unity 

between SNP solutions from both Bayesian 

models. However, as the level of polygenic 

effects increases the accuracy of SNP-BLUP 

increased from 0.20 to 0.24 at 30% polygenic 

effect. Compared with results from the 

ssGBLUP, estimates from the latter were about 

twice from those  from the  SNP-BLUP  ranging  

 

from 0.48 to 0.54 as the proportion of A22 

incorporated in G22 increases.  These accuracies 

were obtained using the mean of IDDs of bulls 

as the validation variable for the validation 

bulls.  However, these estimates of accuracies 

varied from 0.56 to 0.62 if DRPs were used for 

the validation.  The increase in accuracy with 

the ssGBLUP could be attributed to the fact that 

the number bulls with genotypes was about 3 

times that included in the SNP-BLUP model or 

Bayesian methods. The requirement for bulls 

with at least 10 daughters and a reliability of 

40% in the SNP-BLUP meant only 1695 could 

be utilized for the analysis given the low 

reliability of the trait. In addition, the SS 

method incorporated all phenotype and 

pedigree information. 

 

The predictive ability of the models based on 

the regression estimates (Figure 2) indicates 

that  with no polygenic effect, BayesCpi  

resulted in a similar estimate  as ssGBLUP  but  

higher than the estimate from SNP-BLUP.   

Similar to the estimates of accuracies, the 

regression estimates increased with increase in 

the level of polygenic effects varying from 0.46 

to 0.70 at 30% polygenic effect for the SNP-

BLUP models.  While the estimates of 

regressions from the ssGBLUP were generally 

higher than those from SNP-BLUP, however 

this difference decreased as the level of 

polygenic effects increases with estimates of 

0.70 (SNP-BLUP) and 0.73 (ssGBLUP)  at 30% 

polygenic level.    

 

The impact of using validation sets based on 

random selecting of bulls  (VAL2  and VAL3) 

rather than cut off  based  on birthdate is shown 

in Table 1.  For SNP-BLUP, the accuracy of 

genomic prediction increased from 0.24 

(VAL1) to 0.34 (VAL2) and 0.42) (VAL3) with 

the random inclusion of bulls with high 

reliability in the validation sets. This was also 

accompanied with higher predictive ability of 

the model for VAL3 but a slight decrease in 

VAL2.  Slightly higher increases were observed 

for BayesCpi  in VAL2 and VAL3  both in 

terms of accuracy  and predictive ability. 

However, in the case of ssGBLUP, this resulted 

in lower predictive ability of the model in both 

VAL2 & VAL3 compared with VAL1  and 

accuracy of prediction only increased in VAL3 

relative to VAL1.   
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The above results indicate that as the 

percentage of polygenic effects increases, the 

accuracy increased correspondingly for all 

methods used in the analysis. The impact of the 

increasing levels of polygenic effects on SNPs 

of different allele frequencies is shown in 

Figure 3. For SNPs with allele frequencies of 

0.05 to 0.10, the mean SNP effects increased 

with increasing level of polygenic effect until 

10%; thereafter it decreased. However for SNPs 

with frequencies of 0.11-0.40 or > 0.90; the 

mean SNP effects increased with increasing 

levels of polygenic effects.  However, the 

opposite was true for SNPs with frequencies 

between 0.41-0.70 or 0.71-0.80. This implies 

that fitting a polygenic effect does not have a 

uniform impact on the estimates of SNP effects 

and its influence is dependent on the allele 

frequency of the SNP. 

 

 

Conclusion 
 

Given the data structure and size, ssGBLUP 

seems the most appropriate model to apply for 

the genomic prediction of bTB in this study as 

it uses all available information. However 

attempts to define validation data sets that 

capture similar rate of infection as in the 

reference sets resulted in more accurate 

genomic predictions for SNP-BLUP and 

BayesCpi. Fitting a polygenic effect in the 

model does not have a uniform impact on the 

estimates of SNP effects but its influence is 

dependent on the allele frequency of the SNP. 
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Table 1. The accuracies of genetic prediction for bTb using validation data set 2  (Val2) and set  3 

(VAL3). 

Validation 

Set 

SNP-BLUP 

 (30% polygenic) 

BayesCpi ssGBLUP 

           r  b        R       b          r        B 

VAL2 0.32 0.65      0.34    0.70     0.51    0.53 

VAL3 0.41 0.77      0.42    0.80     0.56   0.54 
r = correlations and b = regressions 
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Figure 1.  The accuracy of genomic evaluations as correlations between DGVs and mean of IDD of 

validation bulls. 

 

 

 

Figure 2. Regression coefficients of DGVs on mean of IDD of validation bulls. 
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Figure 3. Mean SNP effects at various levels of polygenic effects ion SNPs of different allele 

frequency. 

0,33

-0,50

0,24

0,94

-0,89

0,35

-0,44

0,20

0,81

-0,85

0,36

-0,38

0,16

0,69

-0,80

0,33

-0,28

0,11

0,52

-0,68

0,29

-0,22

0,07

0,39

-0,57

-1

-0,5

0

0,5

1

1,5

0.05-0.10 0.11-0.40 0.41-0.70 0.71-0.90 >0.90

SNP allele frequency

0

5

10

20

30


