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Abstract 

 

In order to improve accuracy of genomic selection different approaches have been suggested. One 

possibility is to use haplotypes instead of SNPs. It is thought that by the usage of haplotypes the number 

of effects to estimate should be decreased and the accuracy should be increased because the haplotype 

should catch the causal variants better than from LD with SNPs. Different definitions of the length of 

haplotypes are possible. The haplotypes can either be determined by the number of SNPs in a haplotype, 

by the length in base pairs or by linkage disequilibrium (LD) measures. For this study we used four 

different definitions of haplotype lengths either based on physical length in bp or on LD measures. We 

used haplotypes with a length of 250kb or 1Mb, we defined the LD based groups in PLINK and either 

included or excluded SNPs that were not included in any LD block. We estimated genomic breeding 

values with each of these haplotype definitions and compared prediction accuracy to that achieved with 

50K SNPs for four traits in Brown Swiss. The traits were protein yield, non-return rate 56 in heifers, 

somatic cell score and stature. Estimation of genomic breeding values was carried out applying a BayesC 

model. We found trait-specific differences in the ranking of the scenarios. However, differences in 

accuracies between scenarios within trait were relatively low and using haplotypes only marginally 

increased the accuracy of genomic breeding values. The number of variables to be fitted increased 

relative to the SNP model especially for scenarios where the haplotypes were defined by physical length. 
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Introduction 
 

Genomic selection has been introduced into 

many cattle breeding programs over the last few 

years. The improvement of accuracy of 

genomic selection is still challenging. It has 

been found that using whole genome sequence 

data leads only to marginal increases in 

accuracy compared to 50K SNP chip data (e.g. 

Frischknecht et al., 2016). An alternative 

strategy could be the use of haplotype alleles as 

covariates. It has been shown in HD data in 

Nordic Holstein population that the number of 

covariates can be decreased using LD-based 

haplotypes with different D’ thresholds 

(Cuyabano et al., 2014). In that study it was 

determined that the optimal D’ for genomic 

prediction should be D’ ≥ 0.45. The authors 

found an increase in accuracy for predicting 

milk protein and fertility, but not for mastitis. A 

slight increase in accuracy and a decreased bias 

of genomic breeding values was found in the 

Danish Holstein population when predicting 

genomic breeding values with genealogy-based 

haplotypes for the same traits as in the study 

above (Edriss et al., 2013). However, in that 

study the number of covariates increased. In a 

simulation study with densities similar to HD 
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genotypes it has been found that the usage of 

haplotypes is especially beneficial if a trait is 

influenced by quantitative trait loci (QTL) with 

low minor allelic frequency (MAF) (Sun et al., 

2014). 

 

In the study presented here, we evaluated the 

accuracy of genomic prediction in Brown Swiss 

cattle based on haplotypes derived from 50K 

SNP chip data. 

 

 

Materials and Methods 
 

Animals 

 

We used genotypic and phenotypic data from 

the routine genomic evaluation of Brown Swiss 

in Switzerland of August 2015. Bulls in the 

reference population were born between 1959 

and 2011 (Figure 1). We evaluated four traits: 

protein yield (PY), stature (STA), somatic cell 

score (SCS) and non-return rate 56 in heifers 

(NRH). The number of bulls in the reference 

population ranged from 2,018 to 5,294 

depending on trait. The sets of bulls used per 

trait were selected according to a reliability 

threshold of the breeding values (0.5 for STA, 

0.55 for NRH, 0.65 for SCS and PY). The 

validation set consisted of 250 to 600 of the 

youngest bulls, to perform forward prediction. 

 

 
Figure 1. Age distribution of bulls used in the 

analysis of at least 1 trait. 
 

 

Haplotype labelling 

 

The 50K SNP chip data was formatted and 

filtered on the basis of quality measurements for 

routine genomic evaluation (40,636 SNPs). We 

phased the data with Beagle4 using default 

parameters (Browning and Browning 2009). 

We split the genotypes chromosome-wise and 

used the R-package GHap (Utsunomiya et al., 

2016) to label the haplotypes on each 

chromosome. Haplotype alleles with frequency 

less than 0.1% were excluded. We used four 

different definitions for the haplotype blocks – 

two having non-overlapping pre-defined length 

of 250kb (I) and 1Mb (II). The blocks were 

defined in GHap with the ghap.blockgen 

function. The other two approaches were 

constructed using PLINK1.9 (Chang et al., 

2015; Purcell et al., 2007). The following 

parameter were used in order to include as many 

SNPs as possible in blocks (III):  

 

--blocks no-pheno-req no-small-max-span  

--blocks-max-kb 1000000  

--blocks-recomb-highci 0.8  

--blocks-strong-highci 0.8305  

--blocks-strong-lowci 0.5005  

 

The last haplotype block definition included 

the same haplotype blocks defined by 

PLINK1.9 as indicated above and additionally 

all SNPs that were not included in any block 

(IV). The construction of the haplotype blocks 

was done for each trait separately. We evaluated 

the prediction accuracy by comparison to 

caovariates based on the 50k SNP chip 

genotypes directly (0). 

 

The haplotype labelling obtained from 

GHap corresponds to an additive SNP coding. 

This means that for each haplotype allele one 

column is written, where 0 means the animal 

does not carry this haplotype allele, 1 means this 

individual is heterozygous and carries one copy 

of this haplotype allele and 2 means this animal 

is homozygous for this haplotype. Thus one 

region in the genome covering one haplotype 

will take multiple columns according to the 

number of recoded haplotype alleles but one 

individual can only have a maximum of 2 

alleles per haplotype block. 

 

 

Genomic prediction 

 

The above-mentioned coding was directly used 

in GenSel (Fernando and Garrick, 2009), for 

genomic prediction. 

 

As input phenotypes we used deregressed 

breeding values (Garrick et al., 2009). For each 
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trait and method we first estimated π with a 

BayesCπ model and subsequently ran a BayesC 

analysis with the parameter obtained in the 

BayesCπ run. The following model was 

applied:  

 

 

 
 

 

where y is the vector of deregressed phenotypes, 

 is the overall mean, b are the SNP or 

haplotype allele effects and X is a design matrix 

of covariate values for the SNPs of haplotype 

alleles, and e is the residual effect. The accuracy 

of genomic breeding values was calculated as 

the correlation between deregressed breeding 

values and estimated direct genomic breeding 

values for animals in the validation set. These 

correlations for the four methods using 

haplotypes and the control method using SNPs 

were compared. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Results & Discussion 
 

Haplotype labelling 

 

We investigated the number of haplotypes 

obtained from GHap and the frequency of the 

effect allele (Figure 2). For both parameters we 

found little difference between the four traits 

under investigation (results not shown). 

Therefore we pooled these two values for each 

scenario (0-IV) separately and only show the 

average values here.  For the two methods based 

on physical length (I+II), we found that the 

number of covariates nearly doubled compared 

to 50K SNPs (0). Only the blocks obtained from 

PLINK1.9 (III) led to a decreased number of 

variables. However, a large number of SNPs 

(>25 000) were not included in any block. When 

adding these single SNPs to the haplotype 

covariates (IV), where we have again a slightly 

larger number of variables compared to (0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y=1'm + Xb +e

Figure 2. Analyses of the haplotype block properties. A: Number of variables for each haplotype block 

definition (mean across the four traits under investigation). 50k SNPs is for comparison the routinely 

evaluated 50k SNP chip data. B: Frequency of the effect allele. 
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The frequencies of the effect haplotypes are 

influenced by the number of haplotype alleles 

and the number of haplotype blocks along the 

genome. For the haplotype blocks with a length 

of 1M (I) we obtained the smallest proportion 

of effect alleles. This means, that we have a 

large number of haplotype alleles per haplotype 

block. We observed the same trend for the other 

three haplotype block definitions (II-IV), but 

less pronounced. 

 

 

Genomic prediction using haplotypes 

 

The accuracy of genomic prediction using 50K 

SNP chip data varied between traits (ranging 

between ~0.4 and ~0.65; Figure 3). We also 

found differences in accuracy in the different 

haplotype block definitions within trait. These 

differences are much lower than the differences 

between the traits. We observe that PY behaves 

differently than the other traits. For PY the 

genomic prediction using 50K SNP chip data 

(0) outperformed all haplotype prediction 

scenarios (I-IV). For the three other traits at 

least one of the haplotype predictions lead to 

higher accuracy than using the 50K SNP chip. 

 

 

 
Figure 3. Accuracy of genomic prediction for 

each trait and haplotype block definition. 

 

Generally, the 250kb haplotype block length 

(I) was slightly more accurate than the 1 Mb 

haplotype block (II). This is likely due to the 

larger number of variables for the 1M blocks 

(II). This increased number of covariates is 

associated with a large number of rare 

haplotype alleles for which the effects may not 

be estimated reliably. Accuracy was lowest for 

the haplotype blocks defined by PLINK1.9 (III) 

for all traits except PY. One reason for this 

could be, that so many SNPs are not included in 

any block, consequently they are excluded from 

the analysis and therefore a relatively large 

fraction of the genome is not considered at all 

for this analysis. This is supported by the fact 

that the addition of single SNPs to the haplotype 

blocks (IV) leads to higher accuracy.  

 

 

Conclusions 
 

For NRH and SCS the 250kb haplotype blocks 

(I) lead to highest accuracy, whereas for PY the 

50K SNP chip scenario (0) was most accurate 

and for STA the PLINK1.9 blocks combined 

with single SNPs (IV) outperformed other 

methods. For a routine application it would be 

optimal to conduct the analysis for each trait 

with different haplotype block definitions. 

However, the increase in accuracy was only 

marginal. 
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