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Abstract 
 

Since the introduction of parentage verification by molecular markers this technique is based mainly on 

short tandem repeat markers (STR). With the advent of single nucleotide polymorphism (SNP), 

advances in genotyping technologies and decreasing costs, SNPs have become the marker of choice for 

genotyping projects. This is because the genotypes have a wide range of applications and imputation 

technologies provide well a developed compatibility layer between different types of SNP genotypes. 

Thus, the subsequent step is to use SNP genotypes for parentage verification as well. However, 

algorithms for parentage verification mostly date back to the STR era, and recent developments of SNP 

based algorithms such as evaluating opposing homozygosity have drawbacks, for example the inability 

of rejecting all animals of a sample of potential parents. This paper describes an algorithm for parentage 

verification via non-linear optimisation which overcomes the latter limitations and proofs to be very fast 

and highly accurate even with number of SNPs as low as 100. The algorithm was tested on a sample of 

90 animals with 100, 500 and 40k SNP genotypes. These animals were evaluated against a pool of 12 

putative parents containing random animals only, random animals and the true dam, and random 

animals, the true dam and the true sire. Assignment quality of the algorithm was evaluated by the power 

of assignment (Pa , probability of picking the true parent when true parent was among the putative 

parents) and the power of exclusion (Pe, probability of rejecting all parents if the true parent was not 

among the putative parents). When used with 40k genotypes, the algorithm assigned parentage correctly 

for all 90 test animals. That is, if one or both parents were among the putative parents they were correctly 

identified. If both were absent parentage was ruled out for the whole set of putative parents. A similar 

result was achieved when shrinking the genotypes to 500 randomly selected SNP, with Pe = 0.99 and 

Pa = 1. When only 100 SNP, randomly selected but the sample space narrowed by the minor allele 

frequency >0.3, were used, Pe and Pa were still 0.99 and 0.96, respectively. The described method is an 

easy to implement, fast and accurate algorithm to assign parentage using genomic marker data of size 

as low as 100 SNP. It overcomes limitation of methods such as evaluation of opposing homozygosity 

by not relying on the presence of a true parent in the pool of putative parents.  

 

Introduction 

The advent of DNA markers has facilitated 

verification of nominated parents enabling 

more accurate pedigrees for genetic evaluation, 

conflict resolution in breeding animal trading 

and basic parent identification in extensive 

production systems. For the last two decades 

this verification was based on short tandem 

repeat markers (STR), commonly called micro-

satellites, which are highly polymorphic 

allowing to discriminate between individuals 

even if the total number of markers used is low. 

Due to their highly polymorphic character, 

parentage assignment on the basis of STRs can 

be done by simple exclusion or by categorical 

allocation. For an exhaustive review of 

parentage assignment algorithms see Jones et 

al. (2010). 

However, in the last decade single 

nucleotide polymorphism (SNP) have been 

established as a new bi-allelic marker class. 

SNPs became quickly the markers of choice for 

genotyping projects because their sheer 

abundance made them much more suitable for 

genome wide association studies. In addition, 

imputation techniques provided a compatibility 

layer between different types of SNP genotypes 

relieving researchers from the necessity of re-

genotyping ancient animals if SNP panels 

change. Eventually, SNP marker became the 

backbone of genomic selection which is now to 

replace pedigree selection as the dominant form 

of animal breeding (Mäntysaari et al., 2014). 

 

Animal breeding happens within an 

economic environment, and it was only 
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consequential and a matter of time that 

questions arose about the necessity of 

genotyping animals twice, STRs for parentage 

verification and SNPs for genomic selection. 

Since many ancient animals have STR 

genotypes only, a first step to merge both 

approaches was to impute STRs from SNP 

marker genotypes (McClure et al., 2012). While 

this provides a necessary compatibility layer 

between STR parentage verification and SNP 

marker genotypes during a transition period, 

parentage verification should omit imputation 

and rely on SNPs only as soon as SNP 

genotypes for both, parents and offspring, are 

available. However, the bi-allelic nature of 

SNPs requires much more markers for 

successful parent identification. Although 

initial simulations found 100 SNPs to be 

sufficient (Baruch & Weller, 2008), more recent 

experience with real data suggest at least 500 

SNPs for successful parentage assignment 

(McClure et al., 2015). In addition, new 

algorithms had to be developed which could 

exploit information in SNP genotypes for that 

purpose. One method is the evaluation of the 

number of opposing homozygous marker loci as 

a possible measure of parentage (Wiggans et al., 

2009; Hayes, 2011). That is, parents are 

identified by having the least number of loci 

with a homozygosity status opposite to that of 

the offspring because opposing homozygosity 

between parents and offspring is theoretically 

impossible, but introduced by genotyping 

errors. Although necessary speed ups of the 

initial slow implementation of that method were 

developed (Ferdosi & Boerner, 2014), and it has 

been used in some studies already (Heaton et 

al., 2014; Strucken et al., 2014), its main short 

coming remains: the true parents must be 

among the pool of suggested parents (Boichard 

et al., 2014). Boichard et al. (2014) pointed out 

that likelihood based methods (Kalinowski et 

al., 2007; Marshall et al., 1998), originally 

developed to deal with STRs, can allow for the 

absence of the true parents but suffer speed 

limitation, and made necessary adjustments to 

that technique to make it suitable for SNP 

genotypes. However, they found that method to 

have difficulties finding the correct parent if the 

number of SNP markers approached 100 

(Boichard et al., 2014). This article describes a 

non-linear optimisation approach for parentage 

assignment,  in the remainder called  “constraint  

 

genomic regression” (CGR), which overcomes 

the limitations of opposing homozygosity 

evaluation. The algorithm is easy to implement, 

very fast, scales to any size of marker genotypes 

and provides both, a high power of exclusion 

(rejecting wrong parents) if true parents are not 

among the putative parents, and a high power of 

assignment (picking the true parent) if at least 

one parent is among the putative parents, even 

for SNP genotypes with as little as 100 SNP. 

The algorithm was tested on a data set of 4612 

Australian Angus beef cattle SNP genotypes 

using 90 as animals with uncertain parentage. 

 

 

Methods 
 

Model 

 

The problem to solve can be written as: 

 

where y is the marker genotype of the animal 

with uncertain parentage (explained animal) 

and X is a matrix of marker genotypes of 

possible parents (explanatory animals). 

Columns in X can be genotypes of single 

animals (e.g. sire, dam), or functions of 

genotypes of single animals or several animals 

(e.g. population allele frequencies). Values in 

vector b are regression coefficients regressing y 

on the columns in X. Minimising equation 1 

with respect to equation 2 and 3 will yield a 

vector b of which values will not only explain 

the genotype in y as a linear function of 

genotypes in X, coefficients also have the 

straight forward interpretation what proportion 

of y is explained by each column in X. If X were 

containing genotypes of putative sires and dams 

only, values in b are not guaranteed to give 

reasonable results. Thus, it is highly advisable 

to always add the vector of population allele 

frequencies to X. 
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Data 

 

The test data set comprised 4612 genotypes of 

Australian Angus beef cattle where each 

genotype contained 47702 SNPs extracted from 

Illumina 50K Bead Chip genotypes obtained 

during the Australian Beef Cooperative 

Research Center (www.beefcrc.com, Beef 

CRC) project and from cooperating breeders. 

 

 

Genotypes 

 

Genotypes of all animals were used in three 

different test runs: 1) all 40k SNPs were used, 

2) a subset of 500 SNPs randomly selected from 

the full 40k genotypes was used, 3) a subset of 

100 SNPs randomly selected from the full 40k 

genotypes was used, but the sample space was 

narrowed to those SNPs with a minor allele 

frequency larger than 0.3. 

 

 

Animal assignment to the equation 

 

From the set of 4612 animals those 90 

individuals were selected which had a 

genotyped sire and a genotyped dam in the data 

set. These 90 animals will be called “explained 

animals” in the remainder of the article. The 

genotype of each of these animals formed the y 

vector the above equation. Matrix X always 

contained 13 columns, but they were filled in 

three different ways: 1) three columns for the 

known sire, known dam and the population 

allele frequency vector, and the remaining 

columns for a set of 10 randomly selected 

animals, 2) two columns for the known dam and 

the population allele frequency vector and the 

remaining columns for a set of 11 randomly 

selected animals, and 3) one column for the 

population allele frequency vector and the 

remaining columns for a set of 12 randomly 

selected animals. Animals forming X are called 

“explanatory animals” in the remainder of the 

article. Note that the population allele 

frequency vector was calculated excluding 

animals in X and y, the randomly selected 

animals excluded parents, offspring, full sibs 

and half sibs, and the random animals were re-

sampled for every of the 90 explained animals. 

 

 

 

Parentage assignment 

 

Two different methods can be used to assign 

parentage to individuals in X. The first method 

(ranking method) ranks the coefficients in b 

after excluding the coefficient for the 

population allele frequency. Parents are those 

having the greatest one (two), coefficients. A 

second method requires setting a minimum 

threshold for coefficients in b and every animal 

which has a coefficient below this threshold is 

ruled out of being a potential parent (threshold 

method). Since the ranking method would result 

in parentage assignment even when a true 

parent is not among the animals forming X, the 

threshold method was regarded as more 

appropriate because in an application to real 

data animals in X may not contain any true 

parent at all. In addition, if the threshold is set 

appropriately (>1/3) the optimisation constraint 

will force the number of animals with a 

coefficient in b greater than the threshold to be 

≤2, thus avoiding “parentage over-assignment”. 

 

 

Assignment statistics 

 

Power of assignment (Pa) was calculated as: 

 
𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑝𝑎𝑟𝑒𝑛𝑡𝑎𝑠𝑠𝑖𝑔𝑚𝑛𝑒𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑎𝑟𝑒𝑛𝑡𝑠
 

 

where the denominator was 180 if both parents 

were among the animals in X, and 90 if only the 

dam was among the animals in X, and power of 

exclusion (Pe) was calculated as: 

 

1 −
𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑤𝑟𝑜𝑛𝑔𝑝𝑎𝑟𝑒𝑛𝑡𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠

𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑝𝑎𝑟𝑒𝑛𝑡𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠
 

 

where the denominator was always 180. 

 

 

Software 

 

CGR was implemented in a FORTRAN 

wrapper executable which called the NLopt 

library Johnson (2014). The optimisation solver 

used the augmented Lagrangian algorithm as 

global solver and the method of moving 

asymptote   as a  local  solver.  All  computations  
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were carried out on an desktop computer with 

an Intel(R) Core(TM) i7-3770 processor and 

32GB of memory. 

 

 

Results 
 

Parentage assignment 

 

Pa and Pe for different sets of explanatory 

animals and genotypes are summarised in Table 

1. When the whole 40k SNP genotypes were 

used, Pa and Pe were both 1 (see Table 1). Thus 

parentage was assigned correctly for all 90 test 

animals if the pool of explanatory animals 

contained a true parent. If the pool did not 

contain any true parent, parentage was ruled out 

for all animals in the pool because explained 

animals were described best by the population 

allele frequency vector. When 500 randomly 

selected SNPs were used as genotypes, Pa and 

Pe were still very high with 1 and 0.99 

respectively. When at least one parent was 

among the explanatory animals parentage was 

always assigned correctly (Pa=1, Pe=1). When 

no true parent was among the explanatory 

animals, parentage was correctly ruled out in 

179 of 180 cases (Pe=0.99). Decreasing the 

SNP density further to 100 randomly selected 

SNPs from those having a minor allele 

frequency >0.3 made the correct assignment 

more difficult. If both true parents were among 

the explanatory animals, parentage was 

correctly assigned in 173 of 180 cases 

(Pa=0.96), but all random animals were rejected 

as parents (Pe=1). If only the true dam was 

among the explanatory animals parentage was 

correctly assigned in 89 of 90 cases (Pa=0.99), 

but all random animals were rejected as parents 

(Pe=1). If no true parents were among the 

explanatory animals, parentage was correctly 

rejected in 178 of 180 cases (Pe=0.99). A 

statistic for coefficients in b for this SNP set is 

given in Table 2. 

 

Table 1. Power of assignment (Pa) and power of exclusion (Pe) for different genotypes and sets of 

explanatory animals. 

sets SNP genotypes 

 40k 500 100 

 Pa Pe Pa Pe Pa Pe 

both 1 1 1 1 0.96 1 

dam 1 1 1 1 0.99 1 

none - 1 - 0.99 - 0.99 

power of assignment: probability of assigning the right parent if at least one parent is among the explanatory 

variables, power of exclusion: probability of rejecting the wrong parent in favour of the right parent or the vector 

of population allele frequencies, both: both true parents were among the explanatory animals, dam: only the true 

dam was among the explanatory animals, none: none of the true parents was among the explanatory animals 
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Table 2. Regression coefficient statistics for different test sets calculated from the 90 test animal 

evaluations when using 100 SNPs randomly selected from the 40k SNPs if the minor allele 

frequency >0.3. 

coefficient mean s min max 

both parents in the test sets 

sire 0.449 0.055 0.297 0.580 

dam 0.441 0.059 0.245 0.615 

ran 0.011 0.024 0.000 0.198 

mean 0.002 0.012 0.000 0.092 

dam in the test sets 

dam 0.512 0.088 0.322 0.770 

ran 0.035 0.055 0.000 0.275 

mean 0.104 0.124 0.000 0.530 

no parents in the test sets 

ran 0.043 0.064 0.000 0.522 

mean 0.490 0.206 0.000 0.861 

sire: statistics for the coefficients regressing the focused animal on the genotype of the true sire. dam: statistics 

for the coefficients regressing the focused animal on the genotype of the true dam. mean: statistics for the 

coefficients regressing the focused animal on the vector of population allele frequencies. ran: statistics for the 

coefficients regressing the focused animal on the randomly selected animals. The number of random animals was 

10 when both parents were among the explanatory animals, 11 when only the dam was used, and 12 when no 

parents were used as explanatory animals. 

 

Computational demand 

 

Beside reading data, solving time for equation 1 

for a single animal was 0.1 real time seconds 

when using all 40k SNPs. For both the other 

SNP sets processing time decreased to 0.003 

real time seconds per animal. 

 

 

Discussion 
 

Result show that CGR delivers highly accurate 

results even when the number of SNPs is as low 

as 100. This also holds when comparing with 

results given by Boichard et al. (2014), who 

found the specificity of their algorithm (which 

is similar to Pe ) dropping to ∼0.5 if the number 

of SNPs was ≤100. However, these differences 

maybe due to different data sets. The core 

strengths of CGR is the same as of the 

likelihood based method suggested by the latter 

authors: the capacity of ruling out parentage if 

non of the true parents if among the putative 

parents. CGR may also account for genotyping 

errors by either excluding the affected loci or 

replacing the affected loci by an expected value 

or assigning weights to SNPs reflecting 

genotype certainty. When genotypes become 

dense, the assumption about the variance of y 

may not hold due to arising linkage 

disequilibrium (LD), but LD will also affect the 

likelihood formulation of likelihood based 

methods. However, practical parentage 

verification aims to minimise the number of 

used SNPs making inference problems due to 

neglected LD rather unlikely. CGR relies on the 

existence of population information which is 

condensed into the vector of population allele 

frequencies. One may argue that counting 

opposing homozygous loci can exists as a stand 

alone algorithm because it relies on genotyping 

errors rather than allele frequencies. However, 

this only holds if the true parent is among the 

putative parents for sure, which is rather 

unlikely in practical applications. A way to 

make counting opposing homozygous loci more 

versatile is to compare the result of a current 

pair of animals to the same parameter at many 

levels of relationships, which in turn requires 

population information as well, but results may 

still be biased due to a sample dependant 
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genotyping error rate. Relaxing constraint 3 

may allow CGR to run without a vector of 

population allele frequencies, but regression 

coefficients would have to be tested against an 

empirical distribution which can only be 

generated from a sufficient number of 

genotypes. 

 

 

Conclusion 
 

CGR is a fast, efficient, accurate and easy to 

implement algorithm to assign parentage on the 

base of SNP genotypes in samples which 

contain at least one true parent, or to reject 

parentage if the samples do not contain a true 

parent at all. CGR scales automatically to any 

size of genotypes and has proven to provide 

accurate results with genotypes comprising 

only 100 randomly selected SNPs. 
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