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Abstract 

 
As a result of intensive genomic selection in Holstein breeds, the distance of selection candidate to 

genomic reference population has increased. Most genotyped candidates nowadays have no sire with 

daughters in milk yet at the time of being selected for breeding, they are referred to as second-

generation candidates. Genomic model up to now has been optimized for genomic prediction of 

candidates with their sire or dam in reference population, referred to as first-generation candidates, and 

has not accounted for the breakdown of linkage disequilibrium from first- to second-generation 

candidates. To quantify the loss in accuracy and the bias of genomic prediction for the second-

generation candidates, a special genomic validation was conducted, based on genotype and phenotype 

data from the December 2015 genomic evaluation for German Holstein. As a comparison, a regular 

genomic validation was done based on the same validation bulls by treating them as first-generation 

candidates. Accuracy of genomic prediction of direct genomic values, shown in observed R2 values of 

Interbull GEBV Test, was significantly lower for second-generation than first-generation candidates, 

and the decrease in R2 values from first- to second-generation ranged from 0.02 to 0.14 with a mean of 

0.086 for 37 MACE traits. A similar drop in the R2 value was found also in conventional pedigree 

index. Bias of genomic prediction, expressed as ratio of regression slopes between the two validation 

scenarios, deviated also from its expectation. Variance of direct genomic values of the second-

generation candidates was too high, in relation to that of the first-generation candidates, with an 

average of the ratio being 0.95 across all the 37 traits. A shrinkage factor for SNP effect estimates was 

proposed for direct genomic values in order to reduce the over-prediction for the second-generation 

candidates. By doing so, the same set of SNP effect estimates can be used for differentiated prediction 

of genomic breeding values for both the first- and second-generation candidates. The genomic model 

for German Holstein has been optimized for properly predicting genomic breeding values of second-

generation candidates and the optimized model was introduced in April 2016.   
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Introduction 
 

Since the implementation of genomic selection 

and evaluation for Holsteins in 2008 

(VanRaden 2008), generation intervals have 

been reduced significantly, particularly for the 

pathway from sire to son shortened from about 

6 to 2 years. The increased use of young 

genomic bulls as sires of the next generation 

animals has resulted in a widening gap 

between genotyped candidates and genomic 

reference population (RP). Genotyped 

candidates without sire in the genomic RP, 

which are referred to as second-generation 

candidates in this paper, have increasingly 

dominated the selection of breeding animals. 

Even grandsires of some animals or genotyped 

embryos have no daughters or are not included 

in genomic RP. Those candidates with neither 

grandsire nor sire in reference population are 

referred to as third-generation candidates 

thereafter. As a result of the intensive genomic 

selection, first-generation candidates with sire 

included in RP are disappearing. In routine 

genomic evaluation for German Holsteins, the 

second- or third-generation candidates 

dominated the top ranking list in the last years.  

  

The genomic model (Meuwissen et al., 

2001) relies on the linkage disequilibrium 

(LD) between SNP markers and 

genes/mutations responsible for the inheritance 

of evaluated traits. When some of the LD are 

broken down from one to next generation, 

accuracy of genomic prediction will decrease 

and bias of estimated genomic breeding values 

(GEBV) will increase for new candidates. By 

fitting a residual polygenic effect (RPG, Liu et 
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al., 2011), the LD breakdown between RP and 

first-generation candidates can be accounted 

for. Up to now, the LD decay from the first to 

second/third generation has not been accounted 

for properly in genomic prediction. In addition, 

the current Interbull genomic validation test 

(Mäntysaari et al., 2010) does not consider the 

LD breakdown from first to later generations 

either. The objectives of this study were to 

quantify the loss in accuracy and the bias of 

genomic prediction for the second-generation 

candidates and to develop a method for 

optimal genomic prediction for the second-

generation candidates.  

 

 

Materials and Methods 
 

Distance between reference population and 

selection candidates  

 

Tables 1, 2 and 3 show percentages of Holstein 

candidates without sire in EuroGenomics RP 

for German Holstein genomic evaluations in 

August 2011, August 2014 and December 

2016, respectively. Three groups of traits are 

represented in the tables, milk yield as a 

regular trait, longevity as a late-measured trait, 

and direct effect of calving ease as an early-

measured trait. Because Germany did not 

submit calving trait EBV to MACE evaluation 

in 2011, there was no corresponding 

information on direct calving ease in Table 1. 

Last three birth years from the year of genomic 

evaluation were chosen for the analysis. It can 

be clearly seen that the percentage of 

candidates with no sire in RP has increased 

from 23% for the regular trait milk yield in 

August 2011 to 92% in December 2016 

genomic evaluation. An even higher 

percentage of candidates do not have sire in 

RP for the late-measured trait longevity than 

for the regular trait milk yield.  In contrast, the 

early-measured trait, direct calving ease, has 

fewer candidates without sire in reference 

population. About 10-15% of the candidates 

without sire in RP have neither maternal nor 

paternal grandsire in the RP either; they are the 

so-called third-generation candidates. 

Comparing Tables 2 or 3 to Table 1, we can 

see that the first-generation candidates are 

disappearing    and    in    contrast    the     later  

 

generation candidates are dominating the 

selection of breeding animals.  

 

Table 1. Percentages of candidates without 

sire in EuroGenomics RP for German Holstein 

genomic evaluation in August 2011. 
Year 

of birth 

Number of 

candidates 

Regular 

traits 

Late 

traits  

Early 

traits  

2009 6,069 3% 10%  

2010 10,109 11% 20%  

2011 5,194 23% 39%  

 

Table 2. Percentages of candidates without 

sire in EuroGenomics RP for German Holstein 

genomic evaluation in August 2014. 
Year 

of birth 

Number of 

candidates 

Regular 

traits 

Late 

traits  

Early 

traits  

2012 32,441 34% 55% 0% 

2013 33,870 78% 84% 3% 

2014 15,361 91% 93% 24% 

 

Table 3. Percentages of candidates without 

sire in EuroGenomics RP for German Holstein 

genomic evaluation in December 2016. 
Year 

of birth 

Number of 

candidates 

Regular 

traits 

Late 

traits  

Early 

traits  

2014 42,859 40% 80% 0% 

2015 42,214 85% 92% 34% 

2016 26,935 92% 94% 71% 

 

 

A regular genomic validation for the first-

generation candidates  

 

Genotype and phenotype data for conducting a 

genomic validation originated from a routine 

genomic evaluation for German Holstein in 

December 2015. A total of 33,436 Holstein 

bulls were present in the EuroGenomics 

reference population for milk yield. According 

to the GEBV Test procedure (Mäntysaari et 

al., 2010), 29,917 bulls born in and before 

2008 were chosen as reference animals; 

whereas 1,063 younger German national bulls 

were treated as validation animals. Figure 1 

shows the set-up of reference and validation 

bulls for the regular genomic validation by 

treating the validation bulls as first-generation 

candidates.  

 



INTERBULL BULLETIN NO. 50. Puerto Varas, Chile, October 24 - 28, 2016 

19 

 

 
Figure 1. Reference and validation bulls for a 

regular genomic validation for first-generation 

candidates (Trait: milk yield).  

 

In order to simulate second-generation 

candidates, sires, maternal grandsires (MGS) 

and paternal grandsires (PGS) of the validation 

bulls were traced back and their distributions 

across birth years were shown in Figure 2.  

 

The 1063 validation bulls were linked to 

178 sires, 137 MGS or 81 PGS. 734 of the 

1063 validation bulls had sire born after 2002, 

whereas the rest 329 validation bulls had sire 

born in and before 2002. In order to use 

exactly the same validation bulls as first-

generation and second-generation candidates 

in two validation scenarios, the 329 validation 

bulls with older sire were discarded, leaving 

734 validation bulls with sire born after 2002 

(Figure 3). 

 

 
Figure 2. Number of sires, maternal and 

paternal grandsires of the validation bulls born 

in different years (Trait: milk yield).  

 

 

 
Figure 3. Final validation bulls selected as 

first-generation candidates with sire born after 

2002. 

 

 

A genomic validation for the second-

generation candidates  

 

The cut-off year of birth for reference bulls 

was set to 2002 for the genomic validation by 

treating the 734 validation bulls as second-

generation candidates (Figure 4). Sires of the 

validation bulls were too young to be included 

in the RP containing 15,912 reference bulls. 

However, MGS or PGS of the validation bulls 

were present in this RP. Due to the history of 

genotyping of the Holstein reference bulls, the 

number of reference bulls in the RP for 

second-generation candidates, 15,912, was 

much smaller than the RP for first-generation 

candidates, 29,917. Nevertheless, the 15,912 

reference bulls mostly with many daughters 

should result in reasonably accurate genomic 

prediction.  

 

 
Figure 4. Reference and validation bulls for a 

genomic validation for second-generation 

candidates (Trait: milk yield).  
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Results & Discussion 
 

SNP marker effects were estimated using the 

reference populations for each scenario of the 

genomic validation, by treating the same 

validation bulls as first- or second-generation 

candidates. All 37 traits included in MACE 

evaluation for German Holsteins were 

analyzed, except mastitis. Complete genomic 

evaluations were conducted for the two 

scenarios. Interbull’s python software 

GEBVtest was used to perform the genomic 

validation test. Instead of GEBV as 

independent variables, direct genomic values 

(DGV) were used for the genomic validation 

test for first-/second-generation candidates:  

 

eDGVbbDRP firstfirst  10    [1] 

eDGVbbDRP ondond  secsec10   [2] 

 

where DRP represents deregressed EBV of the 

validation bulls, and the subscript first or 

second denotes the validation bulls being 

treated as first- or second-generation 

candidates. The observed R2 values for the two 

regression models [1] and [2] are denoted as 
2

firstR  and 
2

secondR , respectively. The EBV sub-

model of the Interbull GEBVtest is for the both 

scenarios: 

 

 eEBVbbDRP first

EBV

first  10    [3] 

 eEBVbbDRP ond

EBV

ond  secsec10   [4] 

 

where EBV represents male pedigree index of 

the validation bulls. The observed R2 values of 

the regression models [3] and [4] are denoted 

as 
2

_ EBVfirstR  and 
2

_sec EBVondR , respectively.  

 

 

Accuracy of genomic prediction  

 

Figure 5 summaries the reduction in validation 

accuracy (observed R2 value) of DGV by 

treating the validation bulls as second-

generation compared to first-generation 

candidates. In general, second-generation 

candidates had lower accuracy than first-

generation candidates. The reduction in the 

validation R2 values ranged from 0.02 to 0.14, 

with an average of 0.086.   

 
Figure 5. Reduction in validation R2 values of 

DGV by treating validation bulls as second- to 

first-generation candidates.  

 

As for DGV, Figure 6 shows the reduction 

in validation R2 values of the regression 

models [3] and [4] for the male pedigree index. 

The decrease in R2 values from first- to 

second-generation candidates ranged from 0.01 

to 0.27, with an average of 0.065. The trait 23 

with the largest R2 decrease had a trait 

definition change in the past years.    

 

Because the second-generation candidates 

are one generation more apart from bulls with 

phenotypes than the first-generation 

candidates, model reliabilities of the second-

generation candidates are expected to be half 

of those of first-generation candidates. This 

can be clearly seen in Figure 7. Model 

reliabilities of male pedigree index were 

reduced from 0.34 to 0.17 averaged over all 

the traits. The changes in regression slopes of 

models [3] to [4] are less consistent across the 

traits than for DGV and have a larger variation 

among the traits. 

 

 
Figure 6. Reduction in validation R2 values of 

male pedigree index by treating validation 

bulls as second- to first-generation candidates.  
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Figure 7. Model reliability values of male 

pedigree index for the validation bulls as first- 

or second-generation candidates.  

 

 The loss in accuracy of genomic prediction, 

shown in the observed R2 values, was 

substantial for the second-generation 

candidates, in comparison to the first-

generation candidates. The 734 validation bulls 

born in 2009 to 2011 were genomically pre-

selected with varying selection intensity, thus 

the validation accuracy of the two scenarios 

might be influenced by the pre-selection. 

However, the difference in the observed R2 

values between the first- and second-

generation candidate scenarios should be free 

of the impact of pre-selection of the validation 

bulls, because the same validation bulls were 

used in the two validation scenarios.  The 

reduction in validation accuracy varied among 

all the 37 traits, indicating different selection 

pressures on the traits.  

  

 In general, smaller reference populations 

tend to result in lower validation R2 values 

than larger reference populations. It can be 

argued whether the lower validation accuracy 

of the second-generation validation scenario be 

mainly caused by the smaller size of reference 

population rather than by a larger distance 

between the validation to the reference 

population. However, according to a 

simulation study by Interbull Genomic 

Reliability Working Group (unpublished data), 

second-generation candidates also had 

significantly lower accuracy than first-

generation candidates even with identical 

reference populations for the two generations 

of candidates. The magnitude of the accuracy 

loss was similar as found in this study.  

 

 

 

Bias of genomic prediction  

 

Regression slope, b1, of the genomic validation 

models [1] and [2] measures if the variance of 

DGV was too high, if b1 < E(b1)=1, or too low, 

if b1 > E(b1)=1. The ratio of the regression 

slopes of the second- to first-generation 

candidate scenarios: 
 

 
first

ond

b

b
f

1

sec1        [5] 

 

indicates the DGV standard deviation of the 

validation bulls being second-generation 

relative to the first-generation candidates. 

Figure 8 displays the ratios of the regression 

slopes for all the 37 traits.  

 

Average of the ratio f is 0.95 for all the 37 

traits, suggesting that DGV of the validation 

bulls as second-generation candidates has too 

high variance than being first-generation 

candidates. The relative lower regression slope 

for second-generation candidates, in 

comparison to first-generation candidates, was 

also found in the simulation study by the 

Interbull Genomic Reliability Working Group 

(unpublished data). The traits with the ratio 

being close to 1 or even higher, e.g. traits 14-

16, 26 and 27, belong to either recently 

introduced traits or those trait definitions 

changed in the past years. Based on the ratio of 

regression slopes, we can draw a conclusion 

that variance of DGV of the second-generation 

candidates was too high in relation to the first-

generation candidates.  

 

 
Figure 8. Ratio of regression slope estimates 

of the second-generation to first-generation 

candidates. 
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Implementation in routine evaluation  

 

A majority of breeding animals of the Holstein 

breed are selected nowadays based on genomic 

evaluation at a time when their sires still have 

no daughters’ phenotype records. Accurate 

genomic prediction of the second-generation 

candidates plays an important role for 

breeding. Therefore, the current genomic 

model for German Holsteins (Liu et al., 2010) 

has been modified to properly account for 

candidates of different generations apart from 

genomic reference population.   

 

 Based on the EuroGenomics bull reference 

population, generation number is determined 

for each genotyped animal, on a trait-by-trait 

basis, in German Holstein genomic evaluation. 

Due to the much lower proportion of third-

generation candidates, they are treated as if 

they belong to the second generation. Male 

pedigree index is calculated using deregressed 

MACE EBV of all Holstein bulls included in 

MACE evaluation as before, with reduced 

variance and reliabilities for second-generation 

than for first-generation candidates. DGV of a 

genotyped animal is computed as: 

 

 
i

iiazfDGV ˆ̂      [6]  

where ̂  is estimated mean effect of reference 

population in SNP effect estimation, iz  is 

genotypic value (VanRaden, 2008) for SNP i, 

iâ  is estimate of the i-th SNP marker, and f is 

a shrinkage factor for DGV: 
 

 
first

ond

b

b
f

1

sec1   

 

for second-generation candidate; otherwise 
 

  1f .  
 

The average shrinkage factor, 95.0f , for 

second-generation candidates across all the 

traits corresponds to 2.5% less DGV variance 

than the first-generation candidates. When 

DGV of the validation bulls in the second-

generation validation scenario was calculated 

using formula [6], all the traits passed the 

Interbull genomic validation test via the GEBV 

Test software. The shrinkage factor on DGV 

enables the use of the same set of SNP effect 

estimates for calculating DGV of the first- as 

well as second-generation candidates.   

 

 This model optimization for the second-

generation candidates was introduced in 

routine genomic evaluation for German 

Holstein in April 2016.  

 

 

Conclusions 
 

Intensive genomic selection has led to almost 

disappearing of first-generation candidates, 

mainly due to the shortened generation interval 

in the sire to son pathway. When cows are also 

included in genomic reference population, the 

dominance of second- or third-generation 

candidates still persist, if a minimum amount 

of phenotype data is required for cows entering 

the reference population, e.g. with at least one 

complete lactation. Genomic model relies on 

the LD between SNP markers and genes or 

mutations responsible for evaluated traits.  The 

breakdown of LD from first- to second-

generation or second- to third-generation was 

not accounted for in the current genomic 

evaluation. To assess the impact of the LD 

decay, a special genomic validation was 

conducted by treating validation bulls as 

second-generation candidates. As a 

comparison, the same validation bulls were 

used as first-generation candidate in the other 

genomic validation, which is the current 

standard procedure for testing national 

genomic evaluation. Comparing to the first-

generation candidate scenario, accuracy of 

DGV for the second-generation candidates was 

reduced with an average decrease in observed 

R2, 0.086, for all the analyzed 37 traits. Bias in 

DGV of the second-generation candidates, 

expressed as the ratio of regression slope to the 

first-generation candidates, was shown to be 

increased. The average ratio of the regression 

slope estimates was 0.95 for DGV of all the 

evaluated traits, suggesting an overestimation 

of DGV standard deviation of second-

generation candidates, 2.5%, in comparison to 

the first-generation candidates. Fitting a 

residual polygenic effect in the estimation of 

SNP effects can account for the incomplete LD 

between SNP markers and genes and the LD 

decay from reference population to the first-

generation candidates. A shrinkage factor for 
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DGV can consider the LD decay between first- 

and second-generation candidates, reducing the 

over-prediction of GEBV for second-

generation candidates. The current Interbull 

GEBV Test, designed for first-generation 

candidates, might be extended to second-

generation candidates too, by using the 

shrinkage factor for DGV of second-generation 

candidates. 
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