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Abstract 

 
Feed costs are a significant proportion of total costs in most dairy production systems and there is strong 

evidence for substantial genetic variation in total feed intake. However, a large component of this 

variation is unfavorably correlated with important maintenance and production functions of the animal. 

Ideally, selection indexes for improved feed efficiency would consider total feed intake that explicitly 

accounts for the feed required for valuable energy sinks such as milk production, high fertility and 

adequate body reserves. Residual feed intake (RFI), which is defined at the phenotypic level as the 

difference between actual feed intake and predicted feed intake, is a potential selection criterion to 

improve efficiency of feed utilization. However, there are other potential approaches that might have 

desirable attributes when considered in the context of well-established genetic evaluation systems with 

breeding objective definitions that are accepted by industry. In this study, we used simulations to unravel 

the complex inter-relationships among traits such as milk production, live weight and total feed intake. 

Feed intake phenotypes were simulated as a composite of simulated component phenotypes, so that the 

underlying genetic relationships between total feed intake and other traits of interest in dairy production 

systems could be specified precisely. Genetic variance components were then estimated on animals 

simulated from a simple pedigree structure and estimated breeding values (EBVs) were populated into 

several selection indexes with and without feed intake components included. The performance of each 

index was measured by comparing the index predictions against the true observed merit of simulated 

sires. Additionally, we examined how feed intake-based selection indexes would perform when only 

limited feed records are available because feed intake is not routinely recorded in dairy systems. Our 

results show that selection indexes that explicitly account for feed intake were more strongly correlated 

with the true observed merit than a selection criterion that is only parameterized with EBVs for milk 

production. All indexes that included feed intake parameters were more accurate than our base index 

(i.e. without feed intake) even under poor data conditions with limited feed intake recording (e.g. when 

only 10% of daughters were phenotyped for feed intake). Including wasted feed by adjusting total feed 

intake EBVs for other traits that represent known energy sinks while accounting for differences in EBV 

reliability would be very simple to deploy and we found that such an index was almost as efficient as 

our selection indexes for feed intake.   

 

Key words: dairy, farm profitability, feed conversion ratio, feed intake, milk production, residual feed 

intake, sustainability, wasted feed 

 

Introduction 
 

Improving feed efficiency (i.e. the product 

output per unit feed input) is a key factor for 

profitable and sustainable dairy farming (Pryce 

et al., 2014; VandeHar et al., 2015; Hietala & 

Juga, 2017), such as reducing feed costs and 

GHG emissions (Connor, 2015). For example, 

50 to 60% of dairy farm costs are due to feed 

(Knoblauch et al., 2012) and between 3 and 

12% of consumed energy (in ruminants) is 

released into the atmosphere (Beauchemin & 

McGinn, 2008).  

 

Residual feed intake (RFI) is defined as the 

difference between the actual feed intake and 

predicted feed intake (Archer et al., 1999) and 

therefore reflects feed efficiency that is not 

linked to feed required for milk production. 

However, whilst RFI is phenotypically 

independent of production traits, this is not 

necessarily true at the genetic level (Kennedy et 
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al., 1993). Consequently, estimates of genetic 

relationships between RFI and production traits 

are needed to acquire an estimate of genotypic 

RFI (Kennedy et al., 1993).  

 

Implementing feed intake as a selection 

criterion is desirable but not without challenges 

because traits already in the index may have 

some value associated with feed intake that 

must be removed. Therefore, rebuilding the 

existing genetic evaluation system and breeding 

objective, to include feed intake breeding 

values, could be disruptive to existing industry 

genetic evaluation structures. In contrast, RFI 

provides the opportunity to create a novel 

selection criterion to independently select for 

RFI (Hietala & Juga, 2017) without the need for 

adjusting existing indexes (e.g. to avoid double 

counting of penalties associated with economic 

values for already implemented traits 

(Richardson et al., 2017)).  However, residual 

feed intake is not universally accepted as the 

correct approach to deal with feed intake 

records and can be difficult to explain to 

farmers. 

 

The objective of this simulation study was to 

evaluate alternative approaches to the 

integration of feed intake records into an overall 

breeding goal so as to maximize accuracy of 

prediction for overall profitability. 

Additionally, we simulated and assessed 

situations where feed intake recording is 

inconsistent across relatives of different 

selection candidates.  

 

 

Materials and Methods 
 

Feed intake phenotypes were simulated as a 

composite of simulated component phenotypes, 

such as milk production and feed intake that is 

not due to milk production (i.e. for maintenance 

etc.) which we further refer to as wasted feed 

(WF). Therefore, the underlying genetic 

relationships between total feed intake and 

other traits of interest in dairy production 

systems could be specified precisely. Genetic 

variance components and estimated breeding 

values (EBVs) were then calculated on animals 

simulated from a simple pedigree structure 

(note, the results of selection index calculations 

do not depend on the pedigree structure). The 

EBVs were populated into alternative multi-

trait selection index formulations to predict the 

aggregate merit for each sire in the pedigree 

structure. These predictions were compared (by 

calculating the Pearson correlation coefficient) 

with simulated true genetic merit or TOM for 

each sire to evaluate the effectiveness of the 

different index formulations. 

 

 

Pedigree and phenotype simulations 

 

We simulated a total of 100 replicate pedigrees 

and associated phenotypes such as milk 

production. Each replicate contained 8000 

individuals composed of 100 sires and 80 

female offspring per sire. True breeding values 

(TBVs) and phenotypes were simulated using 

phenotypic means and heritabilities provided in 

Table 1, and genetic and residual correlations 

shown in Table 2. Subsequently, phenotypes for 

heifer total feed intake (HFI) and cow total feed 

intake (in first and second lactation; CTF1 and 

CTF2, respectively) were derived from relevant 

component phenotypes (see Appendix). To test 

for the influence of completeness of total feed 

records on selection index performance, we 

cloned each simulated data set but assumed that 

only 30% and 10% of all daughters were 

phenotyped for CTF1 (i.e. 70% and 90% of 

CTF1 records of daughters were randomly set 

to be missing). 

 

 

True observed merit 

 

The TOM was derived from simulated TBVs as: 

 

TOM = CTF1 * $A + HFI * $A * 0.3 + CME1 

* $B * 0.3 + CME2 * $B * 0.7 + Other * $C, 

 

where $A (currency: NZD) is the feed 

associated with producing an extra unit of milk 

energy multiplied by the price of feed (assumed 

for simplicity to be -$1), and $B is the economic 

revenue per unit of milk energy ($5.5; see 

Appendix). The values 0.3 and 0.7 reflect the 

proportion of cows being in first versus second 

and later lactations, respectively (i.e. we assume 

that the genetic traits expressed in second 

lactation cows are identically expressed in third 

and later lactation cows). The parameter $C (see 

Appendix) accounts for the profit through 

additional traits that were not explicitly 

simulated in this analysis.  
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Selection indexes 

 

Variance components and EBVs were 

estimated from the simulated data with REML 

using ASReml 4.1 (Gilmour et al., 2015). The 

EBVs for CME1, CLW, and various feed intake 

alternatives (see below) were then used to 

calculate six selection indexes: 

 

I1 = (CME1 * 0.3 + δ * CME1 * 0.7) * ($B + 

$A) + Other * $C,  

    

I2 = (CME1 * 0.3 + δ * CME1 * 0.7) * $B + 

(CTF1 * 0.3 + ε * CTF1 * 0.7) * $A + Other * 

$C,  

 

I3 = I1 + RFI1 * $A,        

  

I4 = I1 + CLW * γ * $A,       

   

I5 = I1 + (RFIB1 * 0.3 + ε * RFI_B1 * 0.7) * 

$A + CLW * γ,     

 

I6 = I1 + (WF * 0.3 + ε * WF * 0.7) * $A + 

CLW * γ,      

 

where δ and ε denote the linear genetic 

regression predictor coefficients for CME2 

predicted from CME1 and for CTF2 predicted 

from CTF1, respectively. Both coefficients 

were estimated with linear regressions of TBVs 

during first and second lactation and thus were 

assumed to be known for breeding index 

calculations. The parameter γ reflects per 

lactation maintenance feed requirements 

(158.77 kg) associated with 1 kg heavier live 

weight multiplied by $A (-$1 per kg of feed). 

RFI1 denotes the residual feed intake during 

first lactation, which has been estimated from 

an animal model where total feed intake in first 

lactation (CTF1) has been adjusted for cow milk 

energy at first lactation (i.e. CME1 has been 

used as a covariate for CTF1 variance 

component estimation). Similarly, RFI_B1 

reflects residual feed intake during first 

lactation but has been additionally adjusted for 

CLW in addition to CME1. 

 

Indexes I1 and I4 reflect base indexes 

accounting for feed intake costs (i.e. $A) known 

to be associated with other traits of selection 

indexes in where there are, as in common 

practice,   no  breeding   values  for   feed  intake. 

Index I4 additionally penalizes for the costs of 

extra cow live weight. In index I2, total feed 

during first lactation was explicitly included. 

This places reliance on the feed intake estimated 

breeding values to account for feed intake in the 

breeding objective. Selection indexes I3 and I5 

penalize for RFI that is adjusted for milk only 

(RFI1) and RFI that is adjusted for milk and 

cow live weight (RFI_B1), respectively. As an 

alternative to adjusting EBVs of CME for CLW 

(i.e. I2 and I5), we created Index I6 that 

explicitly includes a parameter for WF 

efficiency that is a prediction of genetic merit 

for feed intake that is not due to milk production 

and live weight (see Appendix), similar to a trait 

criterion previously described by Richardson et 

al. (2017).   

 

The results reported here are based on EBVs 

estimated from univariate animal models, 

because a preliminary analysis showed 

negligible differences between EBVs (and 

selection indexes) for the simulated sires 

derived from univariate models and 

multivariate BLUPs. 

 

 

Results & Discussion 
 

Performance among selection indexes 

 

The correlation between selection indexes and 

TOM were all positive but lowest for our base 

index I1 (here the correlation coefficient was 

0.588; Fig. 1).  As per definition, index I1 places 

strong emphasis on increased CME1 (see 

methods and Figs. 2C). Note, CLW was not 

explicitly included in index I1 but genetically 

correlated (genetic correlation was assumed to 

be 0.2; Table 2) with CME1, which resulted in 

a positive correlation between index I1 and 

CLW (Fig. 2A). Thus, selection towards high 

CME1 was accompanied by increased CLW 

(Fig. 2A) and thus index I1 was also positively 

correlated with CTF1 (Fig. 2D). Therefore, 

selection for index 1 increases both live weight 

and milk yield, without any ability to target the 

wasted feed component of the total variation in 

feed intake. This shows as an absence of 

correlation for index I1 with CWF1 (Fig. 2B) 

and explains why index I1 had the lowest 

correlation with TOM among all indexes (Fig. 

1).  
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The correlation with TOM significantly 

increased to 0.638 when cow live weight was 

included (index I4; Fig. 1). Here, the correlation 

between the selection index and CLW was 

negative because index I4 explicitly penalizes 

for the costs of live weight maintenance (Fig. 

2A). However, index I4 was uncorrelated with 

CWF1 and CTF1 (Figs. 2B and 2D). 

 

The highest correlations with TOM were 

achieved for indexes that explicitly included 

total feed intake (index I2), total feed adjusted 

for milk production (indexes I3 and I5), and 

wasted feed (index I6). These indexes 

performed equally well (correlation coefficients 

ranged between 0.658 and 0.662) when all 

daughters were phenotyped for CTF1 (Fig. 1). 

The improved index performance was due to 

their negative correlation with wasted feed (i.e. 

higher ranked sires required less wasted feed) 

(Fig. 2B); their correlations with CTF1 were 

small (Fig. 2D). As for index I3, these indexes 

were positively correlated with CME1 (though 

lower than the TOM correlation with index I1) 

and negatively correlated with CLW1 (Figs. 2C 

and 2A, respectively). That means, indexes that 

include feed information provide good 

predictors for high milk producing cows that, 

however, require less feed, hence resulting in 

lower live weights.  

 

 

Index performance with incomplete records 

 

Our results show that the performance of (total 

and residual) feed intake-based selection 

indexes (indexes I2, I3, I4, and I6) could be 

compromised by incomplete feed intake 

information. For example, the original 

correlation of 0.662 (when all CTF1 records 

were available) between TOM and index I2 (i.e. 

explicitly including total feed at first lactation) 

decreased to 0.644 and 0.628 (absolute change 

was -0.018 and -0.016, respectively) when only 

30% and 10% of daughters were phenotyped for 

CTF1, respectively (Fig. 3). The correlations 

between TOM and index I3 changed similarly 

when CTF1 records were reduced (absolute 

change was -0.013 and -0.015 when CTF1 

records were reduced to 30% and 10%, 

respectively). For these indexes (I2 and I3) the 

correlation   with   CME1   increased   when  less 

 

feed intake records were available and the 

negative correlation with CLW (note that a 

positive genetic correlation between CLW and 

CME1 exists) eroded correspondingly (Figs. 2C 

and 2A, respectively). In other words, greater 

emphasis was shifted towards milk production 

(i.e. both indexes performed similarly to that of 

index I1) (Fig. 2C) when less feed intake 

information was populated into the selection 

index (Fig. 2B and 2D).  

 

In contrast, indexes I5 (i.e. residual feed 

intake adjusted for milk production and cow 

live weight) and I6 (i.e. wasted feed included) 

additionally included information on CLW that 

has been penalized for its maintenance. In this 

case, limited CTF1 records reduced the index 

correlation with CWF1 (Figs. 2D) but the 

negative correlation with CLW was unaffected 

and close to the CLW correlation with index I4 

(Fig. 2A). Thus, the correlations for the indexes 

I5 and I6 with CME1 were unaffected by the 

amount of available feed intake records (Fig. 

2C). Correspondingly, indexes I5 and I6 were 

also affected by incomplete CTF1 data, but 

were the best performing indexes under poor 

data conditions (correlations with TOM 

decreased from 0.660 to 0.651, and from 0.658 

to 0.643, respectively; Fig. 3). In this case, the 

absolute change of correlations was -0.004 and 

-0.005, and -0.011 and -0.005 for indexes I5 and 

I6, respectively.  

 

 

Conclusions 
 

The selection indexes assessed in this study 

performed differently depending on the extent 

of recording of feed intake records. In order to 

avoid rebuilding the existing genetic evaluation 

system and breeding objective, we advocate to 

deploy a selection index that adjusts total feed 

intake estimated breeding values for other traits 

that represent known energy sinks while 

accounting for differences in estimated 

breeding value reliability. We found that such 

an approach is almost as efficient as the 

alternative approaches, including for situations 

where reliability of total feed intake estimated 

breeding values is highly variable within 

selection candidates. 
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Table 1. Description of values used in 

phenotype simulation.  
Phenotype1 h2 Mean CV (%) SD Unit 

HLW 0.3 400 10 40 kg 

HWF 0.3 65253.9 5 3262.69 MJME 

CLW 0.35 600 8 48 kg 

CME1 0.3 47768 10 4776.77 MJME 

CME2 0.3 53075 10 5307.52 MJME 

CBE1 0.2 8000 10 800 MJME 

CBE2 0.2 5000 10 500 MJME 

CWF1 0.3 90501.2 5 4525.06 MJME 

CWF2 0.3 95264.4 5 4763.22 MJME 

Other 0.1 10 10 1 - 
1 Acronyms (in given order) denote heifer live weight, 

heifer wasted feed, cow live weight, cow milk energy at 

1st and 2nd lactation, cow energy released through 

mobilization at 1st and 2nd lactation, cow wasted feed at 

1st and 2nd lactation, and other traits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Genetic (sub-diagonal) and phenotypic (upper triangular) correlations among simulated 

phenotypes (see Table 1 for phenotype description).  

 HLW HWF CLW CME1 CME2 CBE1 CBE2 CWF1 CWF2 Other 

HLW - 0 0.2 0 0 0 0 0 0 0 

HWF 0 - 0 0 0 0 0 0.3 0.3 0 

CLW 0.8 0 - 0 0 0 0 0 0 0 

CME1 0.15 0 0.2 - 0.4 0 0 0 0 0 

CME2 0.15 0 0.2 0.85 - 0 0 0 0 0 

CBE1 0 0 0 0.3 0.2 - 0.4 0 0 0 

CBE2 0 0 0 0.2 0.3 0.85 - 0 0 0 

CWF1 0 0.8 0 0 0 0 0 - 0.3 0 

CWF2 0 0.8 0 0 0 0 0 0.8 - 0 

Other 0 0 0 -0.2 -0.2 -0.2 -0.2 0 0 - 

 

 

 

 

Fig. 1 Average correlation of selection indexes with TOM, the true observed merit (standard errors are 

shown). 
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Fig. 2 Average correlation of selection indexes with CLW (panel A), CME1 (panel B), CWF1 (panel 

C), and CTF1 (panel D); shown are indexes based on EBVs that were estimated from data with 100%, 

30%, and 10% of daughters with CTF1 records (standard errors are shown). 

 

 

 

Fig. 3 Average correlation of selection indexes (that include feed intake) with true observed merit 

(TOM) for different percentages of daughters that were phenotyped for feed intake (standard errors are 

shown). 

 

  

A B

C D 
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Appendix 
 
Derivation of feed intake phenotypes 

 

For heifers, the phenotype for feed intake (HFI) 

was specified as: 

 

HFI = u_HFI + (TBV_HLW + R_HLW) * 

k_HLW + TBV_HWF + R_HWF,  

 

where u_HFI denotes the phenotypic mean for 

heifer feed intake (Table 1); TBV_HLW and 

TBV_HWF are true breeding values for heifer 

live weight and heifer wasted feed, respectively. 

R_HLW and R_HWF denote the residual or 

environmental effects on heifer live weight and 

heifer wasted feed, respectively. k_HLW is a 

scale conversion parameter to convert heifer 

live weight into feed units (see  Table A1).  

 

Individual phenotypes for cow total feed 

intake (CTF1) at lactation 1 were modelled as: 

 

CTF1 = u_CTF1 + (TBV_CLW + R_CLW) * 

k_CLW + (TBV_CME1 + R_CME1) * 

k_CME1 + (TBV_CBE1 + R_CBE1) * 

k_CBE1 + TBV_CWF1 + R_CWF1,  

 

where u_CTF1 is the phenotypic mean of total 

feed intake at first lactation (Table 1), and 

TBV_CLW, TBV_CME1, TBV_CBE1, and 

TBV_CWF1 are true breeding values for cow 

live weight, cow milk energy at first lactation, 

cow energy released through mobilization at 

first lactation, and cow live weight at first 

lactation, respectively. R_CLW, R_CME1, 

R_CBE1, and R_CWF1 denote residual 

environmental deviates added to each TBV. 

Phenotypes for cow live weight, milk energy 

and energy released through mobilization were 

converted into feed units through the 

parameters k_CLW, k_CME1, and k_CBE1 

(Table A1), respectively. Similarly, we defined 

phenotypes for cow total feed intake (CTF2) at 

lactation 2: 

 

CTF2= u_CTF2 + (TBV_CLW + R_CLW) * 

k_CLW + (TBV_CME2 + R_CME2) * 

k_CME2 + (TBV_CBE2 + R_CBE2) * 

k_CBE2 + TBV_CWF2 + R_CWF2  . 

 

 

Table A1. Scale conversion parameters to 

derive the feed intake components HFI, 

CTF1, and CTF2 from simulated component 

phenotypes.  
Description Variable Value 

Cow body energy already defined 

in feed intake units 

k_CBE1 1 

Cow body energy already defined 

in feed intake units 

k_CBE2 1 

Extra kg of total feed energy for a 

cow for extra 1kg of live weight at 

maturity 

k_CLW 158.77 

Cow milk energy already defined in 

feed intake units 

k_CME1 1 

Cow milk energy already defined in 

feed intake units 

k_CME2 1 

Extra kg of total feed energy for a 

replacement for extra 1kg at the 

time when the herd average is 

400kg 

k_HLW 163.13 

Ave total cow feeding intake in L1 u_CTF1 90501.18 

Ave total cow feeding intake in L2 u_CTF2 95264.4 

Ave Total mean heifer feed intake u_HFI 65253.87 

Cow body energy already defined 

in feed intake units 

k_CBE2 1 

Extra kg of total feed energy for a 

cow for extra 1kg of live weight at 

maturity 

k_CLW 158.774 

Cow milk energy already defined in 

feed intake units 

k_CME1 1 

Cow milk energy already defined in 

feed intake units 

k_CME2 1 

Extra kg of total feed energy for a 

replacement for extra 1kg at the 

time when the herd average is 

400kg 

k_HLW 163.1347 

Ave total cow feeding intake in L1 u_CTF1 90501.18 

Ave total cow feeding intake in L2 u_CTF2 95264.4 

Ave Total mean heifer feed intake u_HFI 65253.87 

Cow body energy already defined 

in feed intake units 

k_CBE2 1 

 

 

Parametrization of milk (and other traits) 

profit and feed costs 

 

The economic revenue per unit milk energy 

($B) has been derived so that the ratio of the 

milk and feed components would equate to an 

arbitrary constant of -0.4, implying that the total 

system cost of feed is roughly 40% of milk 

income, as follows: 

 

(CTF1 * $A + HFI * $A * 0.3) / (CME1 * $B * 

0.3 + CME2 * $B * 0.7) = -0.4,   

  

 

 

which when solved for $B gives 
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$B = ($A * (CTF1 + HFI * 0.3)) / (-0.4 * 

(CME1 * 0.3 + CME2 * 0.7))  .    

 

Similarly, the marginal per unit change in 

profit based on other traits is specified under the 

assumption that the genetic variance in true 

merit expressed in dollars due to other traits is 

about 2/3 of the genetic variance in true merit 

expressed in dollars for first lactation milk yield 

as follows: 

 

($C2 * h2_Other * σ2_Other) / ($B2 * h2_CME1 

* σ2_CME1) = 0.66,      

 

where h2_Other and h2_CME1 are the 

heritabilities of other phenotypic traits and cow 

milk energy at first lactation, respectively. 

Similarly, σ2_Other and σ2_CME1 denote 

genetic variances of both traits. This 

relationship has been solved for $C to give: 

 

$C = $B * ((0.66 * h2_CME1 * σ2_CME1) / 

(h2_Other * σ2_Other))0.5  .      

 

 

Wasted feed derivation 

 

WF efficiency can be defined as: 

 

WF = CTF1 - CME1 * k_CME1 - CLW * 

k_CLW,  

    

where we assume the constants k_CME1 and 

k_CLW known to be 1 and 158.774 (Table A1), 

reflecting the expected change in total feed 

intake per unit change in milk production and 

cow live weight, respectively. Our aim was to 

obtain EBVs for WF with minimum prediction 

error variance and being unbiased (i.e. 

E(EBV_WF) = E(TBV_WF)).  For that 

purpose, we assume that the predictions for 

CTF1,  CME1,  and CLW1 are independent (i.e.  

 

 

 

 

 

 

milk is measured on different animals to what 

feed intake is measured on, which mean there 

are no correlated errors of predictions). To 

predict EBVs for WF based on other 

phenotypes’ EBVs, we first de-regressed the 

predictors (i.e. CTF1, CME1, and CLW) by 

dividing each predictor by its reliability 

(Garrick, Taylor, & Fernando, 2009), the latter 

derived as: 

 

r2 = 1 – (σ_ebv / n0.5) / σ2_G,      
  

where σ_ebv is the standard deviation of EBVs, 

n is the sample size, and σ2_G denotes the 

estimated genetic variance. After de-regression 

we obtain: 

 

dEBV_WF = dEBV_CTF1 - dEBV_CME1 * 

k_CME1 - dEBV_CLW * k_CLW  .   
 

 

dEBV_WF was converted back on EBV scale 

as: 

 

EBV_WF = dEBV_WF * 

B_TBV_WF.dEBV_WF,      

 

where B_TBV_WF.dEBV_WF denotes the 

regression of the TBV for wasted feed on 

dEBV_WF which we derived as: 

 

B_TBV_WF.dEBV_WF= K`VK/S`VS * 

r2_CTF1      

 

where K is a vector with the constants k_CME1 

and k_CLW; V denotes a variance covariance 

matrix for true breeding values for CTF1, 

CME1, and CLW; and S is given as: 

 

S= [SQRT(((1/R_TF): k1* SQRT(((1/R_1) : 

k2* SQRT(((1/R_2): …kn* SQRT(((1/R_n)], 

 

with n+1 rows and R_TF is the reliability of 

total feed, R_1 is the reliability of energy sink 

trait 1 etc. 


