
INTERBULL BULLETIN NO. 51. Tallinn, Estonia, August 25 - 28, 2017 

38 

 

Studies on Inflation of GEBV in Single-Step GBLUP for Type 
 

I. Misztal1, H. L. Bradford1, D. A. L. Lourenco1, S. Tsuruta1, Y. Masuda1, A. Legarra3  

and T. J. Lawlor4 

1 Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA 
3 INRA, UMR1388 GenePhySE, Castanet Tolosan, 31326, France 

4 Holstein Association USA Inc., Brattleboro, VT 05302, USA 

 

Abstract 
 

The purpose of this study was to evaluate sources of inflation of GEBV in single-step GBLUP 

(ssGBLUP) evaluations. Tests involved 10 102 702 records of 18 type traits from 6 930 618 Holstein 

cows. A total of 576k animals with genotypes were used in the analyses and included 23 174 sires, 

27 215 cows and 49 611 young animals. The genomic relationship matrix (G) was scaled for 

compatibility with the pedigree matrix for genotyped animals (A22). Genomic estimated breeding values 

(GEBV) using phenotypes up to 2010 or up to 2014 were calculated considering a) inbreeding in A22 

but not in A, 2) inbreeding in both A and A22, 3) as previously but considering nonzero inbreeding of 

phantom parents, and 4) as previously but reducing the additive variance by one half. Reliabilities (R2) 

and regression factors (b1) were derived based on DYD2014 and GEBV2010 of 1711 sires with at least 

50 daughters in 2014 but no daughters in 2010. For cases 1 to 4, the reliabilities were 0.48, 0.49, 0.49, 

and 0.50, respectively. The average regressions were 0.75, 0.85, 0.90, and 0.96, respectively. The b1 

factors could be close to 1 by multiplying G-1 - A22
-1 by lambda and by multiplying A22

-1 by omega. The 

optimal omega was 0.7 for case 1) and 0.9 for case 2). Both parameters are shown to account for ignored 

inbreeding in A. Inflation of GEBV in ssGBLUP can be eliminated by considering inbreeding in A, 

correction factors, and by reducing the additive variance. A comprehensive theory extending unknown 

parent groups to metafounders may automatically eliminate inflation of GEBV for arbitrarily complex 

populations including multibreed.  
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Introduction 
 

Genomic evaluation in dairy is usually validated 

by forward prediction using a regression of 

daughter yield deviation (DYD) of bulls with 

daughters on the genomic prediction obtained at 

an earlier time.  Desired evaluations should 

have high reliability (high R2) and a minimum 

inflation (parameter b1 close to 1.0). In the first 

validation of single-step GBLUP (ssGBLUP) 

for Holsteins (Aguilar et al., 2010), the 

parameter b1 was as low as 0.7, indicating 1/0.7 

inflation of GEBV. In contrast, little or no 

inflation was found for broilers, pigs and beef. 

The inflation could be reduced by ad-hoc 

modifications at a slight reduction of reliability, 

using parameters λ (Aguilar et al., 2010; Harris 

et al., 2012) and ω (Tsuruta et al., 2013), 

however the meaning of those parameters was 

unknown. 

  

In general, ssGBLUP relies on compatibility 

of genomic and pedigree relationships, and the 

inflation is likely caused by a mismatch. The 

issue of compatibility is a complex one. The 

GRM indirectly incorporates “infinite” 

pedigree but depends on scaling, gene 

frequencies, quality control and the number of 

SNPs. The pedigree relationships depend on 

pedigree depth and completeness, and on 

pedigree accuracy. While scale differences are 

likely to result in inflation/deflation, the 

differences in levels likely result in biases. 

Matching both relationship may involve 

matching G only, A22 only or both. The purpose 

of this paper is to look at the factors of 

ssGBLUP in dairy that influence the inflation of 

GEBV.  

 

 

Materials and Methods 
 

Matrix H and compatibility 

 

Legarra et al. (2009) presented a matrix that 

combines pedigree and genomic relationships: 
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This matrix assumes compatibility between 

pedigree and genomic relationships. Different 

scales would cause inflation/deflation of 

GEBV, while different levels would mostly 

cause biases. Other potential sources of 

inflation/deflation are incomplete pedigrees and 

pedigree errors.  

 

 

Scaling genomic relationships 

 

The most popular GRM is given by VanRaden 

(2008): 

 
 

Such a matrix is a direct byproduct of a SNP 

model.  

 

This matrix can be scaled using several 

methods.  

1. Scale G by using gene frequencies from 

the base population. While theoretically 

an optimal solution, in practice such 

gene frequencies are not known and 

need to be estimated at a large cost 

(Gengler et al., 2007). Also, most 

populations have heterogenous base 

populations.  

2. Scale G by using equal allele 

frequencies with a fixed effect in the 

model. Different gene frequencies add 

a constant to GEBV. Therefore, a 

constant (or group effect) can be added 

to the phenotypes of genotyped 

animals. Such scaling accounts mainly 

for biases and not for inflation. Note 

that this scaling has no meaning when 

phenotypes are only for ungenotyped 

animals (e.g., production traits when 

only bulls are genotyped).  

3. Scale G for compatibility with A. The 

scaling could be either by regression 

(VanRaden, 2008) or by enforcing the 

equality of means of diagonal and off-

diagonal elements of G with those of 

A22. This method was linked to the Fst  

index. 

 

Ad-hoc adjustments for inflation 

 

The inverse of matrix H is: 

 

H-1=A-1+ [
0 0

0 G
-1 − A22

-1 ]. 

 

Two types of adjustments were found to 

reduce the inflation: lambda (Aguilar et al., 

2010): 

H-1=A-1+ [
0 0

0 𝜆(𝐆−1 − 𝐀22
−1)

], 

 

where the use of lambda equal to 0.7 increased 

b1 from 0.76 to 0.88, and omega: 

 

H-1=A-1+ [
0 0

0 G
-1 −ωA22

-1 ], 

 

where the use of omega equal to 0.7 increased 

b1 by about 0.15.  

 

 

Effects of inbreeding and correction factors 

 

GEBV for young animals can be presented as: 

 

GEBV = w1PA + w2DGV - w3PI. 

 

When inbreeding is ignored in A and two 

parents are known, the formula is: 

 
 

When inbreeding is considered, the formula 

changes to: 

 
where  
 

Fi = (Fsire + Fdam). 

 

Inbreeding increases the denominator, 

resulting in smaller GEBV comprised of a 

larger fraction of PA. This was found by Lawlor 

et al. (2010).  
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GEBV = 
2

2+ gii−a22
ii  PA + 

gii

2+ gii−a22
ii  DGV  

- 
a22
ii

2+ gii−a22
ii  PI. 

GEBV = 
2/(1−Fi)

2/(1−Fi)+ gii−a22
ii  PA + 

 
gii

2/(1−Fi)+ gii−a22
ii  DGV - 

 
a22
ii

2/(1−Fi)+ gii−a22
ii  PI, 
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When inbreeding is ignored in A but the 

lambda parameter is used, the equation 

becomes: 

 

 
noting that:  

 

 
 

In the absence of (or incomplete) inbreeding, 

the parameter lambda accounts for average 

inbreeding. If individual inbreeding of young 

animals varies, the use of average inbreeding 

causes some accuracy, as found experimentally.  

 

With the omega parameter: 

 

 
 

The omega parameter less than 1 decreases the 

fraction of PP and increases the denominator.  

 

 

Calculation of inbreeding coefficients 

 

Calculating inbreeding from the data depends 

on the depth and completeness of pedigrees. 

Truncating pedigrees to a few generations 

eliminates effects of old missing pedigrees with 

a minimal effect on accuracy (Pocrnic et al., 

2017). Missing pedigrees can be accounted for 

by assuming nonzero inbreeding for the 

phantom parents of unknown parent groups 

(UPG; Westell et al., 1988) by using the 

VanRaden (1992) algorithm. Lutaaya and 

Misztal (1999) found that such an algorithm 

only partially recovered missing inbreeding, 

however, their algorithm had an error (Aguilar 

and Misztal, 2008).  

 

 

Data  

 

Tests involved 10 102 702 records of 18 type 

traits of 6 930 618 U.S. Holsteins, with 

genotypes for 576k animals. 

 

Computations 

 

The data were analyzed using the blup90iod2 

software with the following options: 

1. Inbreeding in A22 but not in A (A) 

2. Inbreeding for both A and A22 (A INB) 

3. Inbreeding including UPG for both A 

and A22 (A UPG) 

4. As above with 50% reduction of 

additive variance (A UPG 50%).  

 

Validation was by the formula: 

 

DYD2014 = b0 + b1GEBV2010. 

 

 

Results and Discussion 
 

Table 1 shows average b1, average R2 and 

correlation between b1 and heritability. 

 

Option b1 R2 Corr(b1,h2) 

(PA-BLUP) 0.76 0.18 0.25 

A 0.75 0.48 0.65 

A INB 0.85 0.49 0.59 

A UPG 0.90 0.49 0.45 

A UPG 50% 0.96 0.50 0.13 

 

As A becomes more complete, the inflation 

decreases, and R2 increases incrementally. Also, 

the correlation between b1 and h2 lowers but is 

still high even with UPG inbreeding considered.  

This strong correlation may result from stronger 

selection for more heritable traits, which 

modifies genetic variances differentially 

depending on the selection pathway. Lowering 

the additive variance (and h2) reduces the 

correlation to almost 0, improves the b1 to a 

point where it is sufficiently close to 1.0, and 

marginally increases R2. Rationale for 

decreasing the heritability is in Wiggans et al. 

(2012). 

 

The actual inflation in ssGBLUP may be less 

because DYD can be biased by preselection.  

Masuda et al. (2017) found that the EBV trend 

is less than the GEBV trend starting for bulls 

born in 2010, with lager differences for younger 

bulls. Those potentially biased EBV were then 

used to calculate DYD. This study used only 

data up to 2014 due to inability to obtain 

genotypes past 2014.  

 

GEBV =
2/λ

2/λ+ gii−a22
ii  PA + 

gii

2/λ+ gii−a22
ii  DGV 

 - 
a22
ii

2/λ+ gii−a22
ii  PI, 

2/λ ≡ 2/(1 − F
i
). 

GEBV=
2/ω

2/ω+ gii/ω−a22
ii  PA + 

gii/ω

2/ω+ gii/ω−a22
ii  DGV  

- 
a22
ii

2/ω+ gii/ω−a22
ii  PI. 
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Inflation and other species 

 

No inflation has been found in broilers, where 

pedigrees are complete and pedigrees included 

only 3 generations; adding more generations did 

not increase accuracy. Little or no inflation has 

been found in commercial evaluation of Angus 

in the US, where pedigrees are quite complete 

and selection is relatively weak. Inflation for 

Holstein in the US could be due to a substantial 

fraction of missing parentage and very strong 

selection for production.  

 

 

Crossbred data and metafounders 

 

Ensuring compatibility between A and G in the 

purebred with heterogeneous base populations 

or the multibreed context is more complex. The 

completeness of pedigree will still be an issue, 

but re-ranking due to scale may be 

automatically eliminated if a model includes 

breed effects. See Christensen et al. (2014) for 

a specialized case of a terminal cross. Out of 

many choices in pigs, ignoring breed 

differences was the best choice in Lourenco et 

al. (2016).  

 

Automatic scaling for arbitrarily complex 

populations with missing pedigree may be 

possible using metafounders (Legarra et al., 

2015). As G accounts for all past pedigrees, this 

method proposes to adjust A to G as follows: 

1. Create G using equal gene frequencies 

and some base scale. 

2. Create as many UPG as necessary and 

call them metafounders. 

3. Based on G, create a covariance matrix 

between metafounders. 

4. Construct A and A22 using the 

metafounders and the covariance 

matrix.  

 
In tests, ssGBLUP using the metafounders 

was superior for a crossbred prediction (Xiang 

et al., 2017). In a simulated single population, 

ssGBLUP with metafounders was superior to 

regular ssGBLUP with inbreeding ignored but 

similar with inbreeding considered (Garcia-

Baccino et al., 2017).  

 

 

 

Conclusions 

 
Evaluations by ssGBLUP are inflated when the 

pedigree is long but incomplete and inbreeding 

in A is ignored. Inflation can be reduced by a 

combination of pedigree truncation, 

incorporation of inbreeding in A in addition to 

inbreeding for unknown parents, and by 

reducing the heritability.  
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