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Abstract 

Different imputation methods are used to deal with missing markers and to infer genetic 
characteristics. In routine genetic evaluation, the majority of adopted imputation methods are pedigree 
and population based. In this study, we compare the routinely used methods with innovative methods 
based on deep learning and other machine learning frameworks. Therefore, the frameworks Keras, 
LightGBM and a combination of these methods are compared to the common software tool Beagle. 
Imputation accuracy for four different genetic characteristics were analysed. Results show that 
a combination of Keras and LightGBM outperform Beagle significantly in accuracy and the 
computation time decreases drastically. The results also demonstrate that big datasets and the presence 
of close related animals in the training set are needed. In conclusion, machine learning methods, such 
as deep learning, are novel powerful tools, which can improve the efficiency of breeding programs.  
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Introduction 

In routine genetic evaluation, different chip 
densities are extrapolated to a common sizes 
by imputation (Segelke et al., 2012). 
Moreover, imputation is used to infer genetic 
characteristics (Segelke et al., 2013). 
Imputation can be done by pedigree based, 
(VanRaden et al., 2013 or Sargolzaei et al., 
2014) or population based imputation methods 
(e.g. Beagle: Browning & Browning, 2007). In 
times of artificial intelligence, deep learning 
and other machine learning methods become 
more popular. Especially for image analysis 
these methods produce outstanding results in 
contrast to linear models. Aim of the present 
study was to compare the performance of 
machine learning methods to routinely used 
imputation methods using the example of four 
different genetic traits.   

Materials and Methods 

Cholesterol deficiency (CD; Kipp et al., 
2015), HH3 (McClure et al. 2013), Kappa 
Casein (Caroli et al., 2009) and polledness 
(Rothammer et al. 2014) were exemplary 
chosen for this study. The four traits are 
routinely analysed with the current 
EuroGenomics medium density chip and the 
previous EuroGenomics low density SNP 
chips. Table 1 gives an overview of the 
number of animals in the training and 
validation set per genetic characteristics. 
Training animals were born between 2011 and 
2018. All validation animals were born in 
2019. Minor allele frequency varied between 
validation and training data set (Table 1) 
because the validation animals were younger 
and selection for valuable traits like the kappa 
casein B-Allele and polledness selected against 
HH3 and CD, respectively.  
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Table 1. Number of animals and minor allele 
frequencies (MAF) for different genetic 
characteristics 

 CD Kappa 
Casein 

HH3 Polled 

No. of 
training 
animals 

242,600 428,974 406,867 406,250 

No. of 
validation 
animals 

33,292 33,873 33,275 33,289 

MAF 
training (%) 

2.4 34.8 2.5 4.9 

MAF 
validation 
(%) 

1.8 39.9 1.9 7.1 

Missing 50K marker on the LD chip were 
imputed with FImpute V2 (Sargolzaei et al., 
2014).  

The software package Beagle (v. 1398; 
Browning & Browning, 2007) was compared 
to the deep learning framework Keras 

 (Francois et al., 2015) and the gradient 
boosting framework LightGBM (LGBM; Ke et 
al., 2017). Beagle is a genetic optimized 
algorithm using population based information. 
20 imputations and phasing iteration were 
chosen. The deep learning library Keras is used 
with the Tensorflow (Abadi et al., 2015) 
backend. An example of the chosen model and 
number of hidden layers and outputs can be 
found in figure 1. LGBM is a fast gradient 
boosting framework that uses decision trees.  

Parameters chosen are, i.a, a learning rate of 
0.02 and a maximum of 20,000 boosted trees 
with early stopping. In addition to the 
individual predictions of the neural network 
and the gradient boosting machine, the average 
of the two predicted probabilities is used as 
another prediction (Ensemble). 

Accuracy was measured by the correlation 
between imputed and true genotypes.  

 

 

Figure 1. Keras model plot for polled 
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Results 

Table 2 shows the imputation accuracy per 
genetic characteristic. For all traits the 
ensemble method gave the highest imputation 
accuracy. In contrast, Beagle had the lowest 
accuracies for all traits and the highest 
computation time varying between three to 
eight hours. All other methods were extremely 
fast with a computation time between one to 
eight minutes.  

Table 2. Imputation accuracy for different 
traits and methods 

Trait Beagle Keras LGBM Ensemble 
Polled 98.7 98.8 98.8 98.9 
CD 94.9 96.5 96.7 97.1 
HH3 98.9 99.1 99.4 99.5 
Kappa 
Casein  

99.6 99.6 99.6 99.6 

 

Table 3 illustrates the accuracy of 
validation animals by their relationship to the 
reference population for polledness. 
Imputation accuracy for Beagle clearly 
depends on the presence of relatives in the 
training population although Beagle does not 
use the pedigree information as input variable. 
Keras shows a similar pattern. For LGBM no 
clear trend can be found, here the scenarios, in 
which only dam or only sire was presented in 
the training population had higher accuracies 
than the two other scenarios.  

Table 3. Accuracy of validation by their 
relationship to the reference population 
(polledness) 

Presence of relatives 
in training population 

Beagle Keras LGBM 

Sire & dam (n=10,035) 99.3 99.6 99.0 
Only dam (n=16,764) 99.2 99.3 99.2 
Only sire (n=19,136) 99.1 99.4 99.0 
Neither sire nor dam 
(n=16,525) 

98.4 98.3 98.6 

 

Discussion 

Deep learning and machine learning 
methods need big data sets to outperform 
classical methods. To analyses this effect 
different sizes of training datasets were 
simulated (5,000, 25,000, 50,000, 100,000, 
200,000, and 400,000). The results show, that 
for using data sets with less than 400,000 
animals, Beagle had better imputation results 
in terms of accuracy compared to the other 
models. However, using the biggest datasets, 
all three methods outperform Beagle.  

 

Conclusion 

Imputation accuracy can be improved by 
using deep learning or other machine learning 
algorithms instead of Beagle. The computation 
time decreased drastically by using the 
innovative frameworks. The combination of 
the LGBM and the Keras model results in the 
highest accuracy, but large datasets are needed 
to outperform existing methods. Close relatives 
in training population are important for all 
frameworks.  

Outlook 

Due to the linearity of breeding values, the 
advantages of deep and machine learning 
frameworks might be limited for genetic and 
genomic evaluation. Nonetheless, those 
frameworks provide great potential to improve 
various branches of animal breeding industry. 
For example, for the routine imputation from 
lower density to a common size. First results 
show that missing SNPs on LD chips can be 
imputed to a common reference size using 
deep learning methods with a similar accuracy 
as FImpute.  

Furthermore, the deviation of new 
phenotypes by sensor data or images can be 
analyzed using deep learning. MIR spectral 
data analysis and data anomaly detection 
(plausibility checks) can be improved.  
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