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___________________________________________________________________________ 
Abstract 
 
A method is presented for imputing genotypes in pedigreed populations based on long-range phasing, 
haplotype libraries, recombination modelling and segregation analysis. In two very different data sets, 
one a pig data set comprising animals from a single line and the other a multiple breed cattle data set, 
imputation accuracy was high and was always higher than that of Impute2 a widely used alternative. 
Accuracy was highest for animals which had both parents genotyped at high-density, however some 
animals with neither parent genotyped at high-density also had high imputation accuracy. The method 
imputes genotypes or sum of the allele probabilities for all animals in the pedigree and thus facilitates 
single stage genomic evaluations combining all available pedigree, genomic, and phenotypic 
information in a single step. This was explored using both simulated and real data with favourable 
results.  
 
Introduction 
 
Genomic information is now widely used in 
many breeding programs. To be successful it 
requires large numbers of animals that are both 
intensively genotyped as well as phenotyped. 
Densely genotyping the numbers of animals 
required is prohibitively expensive. Therefore 
much research effort has been focussed on 
developing methods and strategies for the 
imputation of genotypes. Imputation in 
livestock scenarios can access information on 
low-density genotypes, pedigree, linkage, and 
linkage disequilibrium. The first objective of 
this paper was to briefly describe an 
imputation method that accesses pedigree, 
linkage, and low-density genotype information 
to perform imputation in livestock scenarios. 
The method, which is implemented in a new 
software package called AlphaImpute 
combines simple phasing rules, long-range 
phasing, haplotype libraries, segregation 
analysis, and recombination modelling to 
generate imputed genotypes or sum of the 
allele probabilities for all animals in a pedigree 
at all loci. The second objective was to 
illustrate how these imputed genotypes or sum 
of the allele probabilities can be used to 
implement a single stage genomic evaluation 
that combines all pedigree, phenotypic, and 

genotypic information available in a single step 
(SSAI).  This may overcome the problem of 
the pedigree and genomic relationship matrices 
having different bases in the single stage 
genomic evaluation methodology of Misztal et 
al. (2009) (SSMi) and easily facilitates 
variable weighting on individual SNP using an 
approach such as BayesB. 
  
 
Material and Methods 
 
AlphaImpute combines simple phasing rules, 
long-range phasing, haplotype libraries, 
segregation analysis, and recombination 
modelling to impute genotypes or sum of the 
allele probabilities for all loci of all animals in 
a pedigree. It proceeds by firstly separating out 
a set of high-density animals. These animals 
have their SNP phased using long-range 
phasing and haplotype library imputation 
(Hickey et al., 2011). Allele probabilities (Kerr 
and Kinghorn, 1996) are calculated for all SNP 
of all animals in the pedigree and where these 
probabilities are >0.99 alleles are imputed. 
This can be thought of as single locus phasing. 
Next the haplotypes identified from the long-
range phasing step are matched to alleles 
phased via the single locus phasing step. This 
matching step begins with parental and other 
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ancestral haplotypes by processing the data 
from the top of the pedigree downward. The 
second part of the matching step involves 
processing the haplotype libraries to see if the 
haplotypes that an animal carries exist in the 
library in animals that are not ancestors. This 
process is iterated a number of times before the 
sum of the allele probabilities are re-
calculated. Finally recombination locations are 
identified and modelled assuming that SNP 
and recombination hotspots are evenly 
distributed across the genome. 
 

The performance of AlphaImpute was 
tested in two data sets. The first a PIC pig data 
set, comprising a pedigree of 6,473 animals in 
which 3,709 animals were genotyped at high-
density. The second was a multiple breed LIC 
cattle data set, comprising a pedigree of 24,017 
animals of which 5,047 were genotyped at 
high-density. Both data sets were divided into 
training and testing sets. Testing sets had 
proportions of their high-density genotypes 
masked and then imputed. Low-density 
genotyping platforms roughly equivalent to 
0.5k, 2.5k, 5k, and 7.5k per genome were 
created. In the pig data set the testing set 
comprised 509 animals from the most recent 
generation. For cattle, the testing set comprised 
626 animals randomly selected from the 
genotyped animals with the restriction that the 
animals testing animals had to have their 
parents identified in the pedigree. The 
accuracy was calculated for 6 different groups 
of animals, those with both parents genotyped, 
sire and maternal grandsire genotyped, dam 
and paternal grandsire genotyped, sire 
genotyped, dam genotyped, and other animals. 
Imputation accuracy was measured as the 
correlation between true and imputed 
genotypes. Imputation performance was 
compared to that of Impute2 (B. Howie and J. 
Marchini, Oxford University).  

 
AlphaImpute generates imputed genotypes 

or sum of the allele probabilities for all loci of 
all animals in a pedigree. These can be used in 
the SSAI to combine all pedigree, genotype, 
and phenotype information in a single step 
evaluation. The SSMi of Misztal et al. (2009) 
combines genomic, pedigree and phenotype 
matrix by modifying the elements in the 
pedigree derived relationship matrix based on 
genomic information. SSAI was explored in 

two steps. Firstly simulated data was used to 
show that using sum of the allele probabilities 
(Kerr and Kinghorn, 1996), without any 
imputation via AlphaImpute, for all 
ungenotyped animals in the pedigree gave 
identical results to SSMi. Secondly real data 
was used to show that the SSAI could increase 
the accuracy of genomic selection.  

 
Briefly the simulated data were created by 

first simulating ancestral haplotypes using a 
coalescent process, these haplotypes were then 
dropped through a pedigree of ten generations 
where each generation comprised 1000 
offspring from 500 dams and 50 randomly 
selected sires. Mating was at random. 
Genotype information was assumed to be 
available for the sires from generations 1, 2, 
and 3, for all animals in generations 4 and 5, 
and for 500 randomly selected individuals in 
each of generations 6, 8, and 10. Phenotype 
information was available for generations 
2,3,4, and 5. The animals in generations 6, 8, 
and 10 were candidates for selection 
representing close, medium, and distant 
relatives. Four traits with different distributions 
of QTL effects were simulated. This data was 
analyzed using SSMi. It was also analyzed by 
first calculating sum of the allele probabilities 
for all animals in the pedigree, then using this 
information to construct a genomic 
relationship matrix for all animals and then 
estimate genomic breeding values using Gblup. 
To clarify, no imputation was done here other 
than the single locus peeling of Kerr and 
Kinghorn (1996).   
 

In the real data analysis the pig data set was 
used. Two scenarios were compared. In 
scenario 1 (SC1) only 3200 high-density 
training animals were used to train the 
prediction equation. In scenario 2 (SC2) the 
2764 animals without genotypes were used in 
addition to the high-density animals to train the 
prediction equation. To apply SSAI to SC2 
AlphaImpute was used to generate imputed 
genotypes or sum of the allele probabilities for 
all animals in the pedigree. Genomic breeding 
values were then predicted using Gblup based 
on this information. Contrary to the simulated 
data, explicit imputation was carried out here. 
The accuracy of the GEBVs were validated in 
the 509 testing animals by correlating them to 
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progeny test estimated breeding values 
calculated using traditional BLUP. 
 
 
Results and Discussion 
 
AlphaImpute imputed genotypes with very 
high accuracy. Across all of the categories of 
animals in both the pig and cattle data sets it 
had greater accuracy than IMPUTE2 (Tables 1 
and 2) and performed the task in less time. The 
increase in accuracy of AlphaImpute over 
IMPUTE2 increased with reducing density of 
the low-density panels. For AlphaImpute the 
correlation between true and imputed 
genotypes/sum of the allele probabilities 
increased with increasing relatedness between 
the ancestors who were genotyped and the 
animal to be imputed and as the density of the 
low-density genotyping increased.  
 

In the analysis of the simulated data using 
sum of the allele probabilities to include 
completely ungenotyped relatives in a single 
stage genomic evaluation gave results identical 
to SSMi for all traits in each of the groups of 
relatives (close, medium, and distant) 
suggesting that these two models have similar 
properties. Two problems may exist with 
SSMi, firstly the genomic relationships and the 
pedigree relationships may have a different 
base generation and secondly SSMi does not 
automatically place differential emphasis on 
important SNP in a way that a variable 
selection method such as BayesB would do. 
SSAI overcomes the base generation problem 
by using the genotype information to estimate 
the base generation. Because all animals have 
genotype information, variable selection 
methods such as BayesB can be used in SSAI 
to differentially weight different SNP 
according to their effect on phenotype for each 
trait. 
 

Applying SSAI to the real pig data 
increased the accuracy of genomic selection. 
The accuracy of the GEBV for SC1 was 0.41 
across all 509 of the testing animals and 0.51 
for the 32 testing animals that had an accuracy 
of their BLUP EBV of greater than 0.90. In 
SC2 the accuracy increased to 0.49 for all 509 
testing animals and 0.62 for the group of 
animals with highly accurate BLUP EBV.  

Imputing through phasing with use of 
information from relatives, as carried out here, 
paves the way for inference of IBD status 
between contributing gametes across the 
dataset, at the locus level and above.  This will 
result in genomic relationship matrices based 
on IBD rather than IBS, which remove scaling 
issue and likely increases in accuracy of 
GEBVs. 
 
 
Conclusions 
 
The method to impute genotypes implemented 
in AlphaImpute is robust and accurate. The 
output of the program results in an alternative 
parameterization of the single stage genomic 
evaluation that uses all pedigree, genotype, and 
phenotype information available. 
 
 
Availability 
 
AlphaImpute is available at: 
http://sites.google.com/site/hickeyjohn/ 
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Table 1. Accuracy of imputation for AlphaImpute (AI) and Impute2 (I2) for the pig data sets for the 
different low density scenarios. 
 0.5k 2.5k 5.0k 7.5k 
Category AI I2 AI I2 AI I2 AI I2 
BothParents 0.98 0.77 0.99 0.92 1.00 0.96 1.00 0.96 

SireMGS 0.93 0.80 0.98 0.92 0.99 0.94 0.99 0.96 

DamPGS 0.96 0.79 0.98 0.92 0.99 0.95 0.99 0.96 

Sire 0.89 0.78 0.97 0.92 0.99 0.95 0.99 0.97 

Dam 0.90 0.76 0.96 0.89 0.98 0.93 0.98 0.95 

Other 0.86 0.79 0.94 0.91 0.97 0.95 0.97 0.96 

 
Table 2. Accuracy of imputation for AlphaImpute (AI) and Impute2 (I2) for the cattle data set for the 
different low-density scenarios. 
 0.5k 2.5k 5.0k 7.5k 
Category AI I2 AI I2 AI I2 AI I2 
BothParents 0.97 0.64 0.99 0.92 0.99 0.94 1.00 0.95 

SireMGS 0.87 0.60 0.97 0.91 0.98 0.95 0.99 0.96 

DamPGS 0.92 0.63 0.97 0.87 0.98 0.91 0.98 0.95 

Sire 0.86 0.60 0.96 0.90 0.98 0.95 0.98 0.96 

Dam 0.95 0.63 0.98 0.90 0.99 0.97 0.99 0.95 

Other 0.84 0.58 0.94 0.90 0.96 0.95 0.97 0.96 

 


