
INTERBULL BULLETIN NO. 44. Stavanger, Norway, August 26 - 29, 2011

 114

The Use of GPUs in Genomic Data Analysis

M.P. Coffey, R. Mrode and T. Krzyzelewski
SAC, Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG UK

Abstract

Modern animal breeding datasets are large and getting larger, due in part to recent availability of high-
density single nucleotide polymorphism arrays and cheap sequencing technology. High-performance
computing methods for efficient data warehousing and analysis are under development. Storage
requirements for genotypes are modest, although full-sequence data will require much more storage.
Storage requirements for intermediate and results files for genetic evaluations are much greater,
particularly when multiple runs must be stored for research and validation studies. Genomic evaluation
using large datasets requires a lot of computing power, particularly when large fractions of the
population are genotyped. Large datasets create challenges for the delivery of timely genetic
evaluations which must be overcome in a way that does not disrupt service provision in the transition
from conventional to genomic evaluations. Processing time is important, especially as real-time
systems for on-farm decisions are developed. Modern graphics processing units (GPUs) found in
consumer PCs offer animal breeding a means to compute genomic breeding values in reasonable time.

Keywords: Genomic selection, GPU, CUDA, matrix calculations

Introduction

Genomic evaluations are becoming relatively
widespread due to the availability of low(er)
cost genotyping and the concomitant increases
in the number of animals genotyped. It is
expected that this trend will continue leading
to price pressure downwards on genotyping
and a further increase in use. Improvements in
imputation techniques further allows lower
density (and cheaper) genotyping platforms to
be used by individual farmers for genotyping
cows consequently adding greatly to the
number of animals and density of SNPs being
analysed. These trends are likely to have at
least 2 important outcomes that will affect
those engaged in providing genetic evaluation
services 1) the genomic datasets will rapidly
increase in size and require specialised
handling and computing algorithms and 2)
farmers expectations on the turn round time for
the provision of genomic breeding values
(GEBVs) will rise. The consequences of these
for the production of GEBVs are that
computing demands will be substantial and
rising and a reappraisal of computing strategies
may be required to ensure the continued
provision of timely and useful services. In the
calculation of GEBVs in the UK, around 80%
of the total computing time is expended on
preparing (multiplying) and then inverting the
G matrix for reliability estimation. This fact

allows a concentrated effort on that particular
point in the computing chain for seeking
efficiency gains.

Problem

The biggest (current) computing problem to be
solved for calculation of GEBVs is matrix
inversion for matrices of size at least 20,000 x
54,000 and as imputation yields more data,
inversion of matrices of 20,000 x 800,000. As
more and more cows are genotyped the G
matrix may exceed 30 or 40,000 within 1 or 2
years. In any case and for any genotype density,
the problem is big for real time service
provision.

Solution

There appears to be a relatively cheap and
promising technology available to help animal
breeders keep pace with compute demands of
genomic evaluation. Advances in graphic
processing units (GPUs) found in many
consumer PCs driving the display has been
high due to demands from computer games.
This has led to a technology called CUDA
(compute unified device architecture; NVIDIA
2011) that exposes the underlying GPU
hardware to developers. The technology has

INTERBULL BULLETIN NO. 44. Stavanger, Norway, August 26 - 29, 2011

 115

already been exploited by systems that have
very high computing demand and especially
for calculations that can be parallelised.
Examples are in weather forecasting and fluid
dynamics (Corrigan et al., 2010). For animal
breeding, matrix multiplication and inversion
falls into this category and lends itself well to
acceleration using GPUs.

Whereas CPUs are very versatile and can
deal with many different devices and tasks,
GPUs are extremely limited in their capability
but extremely fast at matrix manipulation since
they have many cores that can all compute
independently. Thus in contrast to CPUs, they
do not do much but do it very well. For
example, in an NVIDIA Gtx 590 there are 2
GPUs with over 500 cores and 1.5GB RAM on
each GPU. This provides over 1000 cores that
can compute in parallel on one card. Multiple
devices (GPUs) can be rack mounted and
addressed in parallel by one or more CPUs
thereby making many thousands of compute
cores available to solve a particular
computation.

Fortunately for animal breeders, existing
legacy software can be used and adapted to
exploit GPUs. A Fortran compiler is available
from Portland Group (http://www.pgroup.com/)
that enables automatic creation of CUDA
kernels at compile time that run on the GPU.
This is achieved simply by surrounding loops
that have independent variables by a special
pragma that is conveniently ignored by other
compilers. The same compiler also compiles
native CUDA Fortran code written by hand to
exploit the GPU features. This development
route yields greater speed improvements but is
more costly in development time since it will
involve re-engineering of existing code. C++
compilers are also available to achieve the
same result.

The performance gains are not easy to
achieve simply by small adaptations to existing
code since the matrices are often too big for
the amount of RAM available. A drawback of
GPUs is that currently they have limited
amounts of on-board RAM and CPU RAM is
unavailable to them. A 7072 x 47280 matrix of
real data type occupies about 1.24GB RAM.
Any manipulation of the matrix requires 2 or 3
times that amount of RAM. In order to
overcome the limitation of small amounts of

RAM on GPU cards, a wrapper is needed that
breaks down the problem into parts and solves
each part separately on the GPU before passing
results back to the CPU for assembly into the
final answer. Suppose that C = AA´, where A
is a 7,072-by-47,280 matrix of floating point
numbers. The problem may be broken down
into blocks for processing in parallel as:









++
++

=
















21212121

21212121

22

22

11

11

DDBCCDAC
DBBACBAA

DC
BA

DC
BA

where A1, …, D1 are submatrices of A, and
A2, …, D2 are submatrices of A´.

The inversion of large matrices also is a
common problem in genetic and genomic
evaluations, and research is underway at
EGENES to develop a system in which a CPU-
side process will determine GPU availability
and then break-down matrices into suitably
sized blocks for piecewise inversion. This
should (in theory) allow for the inversion of
any matrix in a way that will utilize all
available computing resources, either locally
or in a cluster setting. Such a routine would be
portable across many hardware configurations
and would exploit all available CPUs and
GPUs.

The cost of breaking the problem down to
exploit the GPU hardware must exceed the
benefit from accelerated processing speeds.
Passing blocks of data from the CPU to the
GPU takes time and passing the processed
results back takes additional time. Thus a form
of intelligence is required in the wrapper to
detect available GPUs and determine from the
size of the computation task, the expected
benefits to be gained from offloading to GPUs.
This type of intelligence is present in many
compilers that seek to alter the basic source
code to allow efficient optimization of
compiled code. Sometimes, and for some
problems, it is simply too costly to break up
the problem and pass it to the GPU and so
processing continues as usual on the CPU.

Discussion

Genotype datasets are getting larger but we
already have many tools for working with
them at present. To ensure that this remains the
case in the face of expected increases in

http://www.pgroup.com/�

INTERBULL BULLETIN NO. 44. Stavanger, Norway, August 26 - 29, 2011

 116

dataset size, prototype software must be
designed to consider scalability at the outset,
which is often not done with software used for
research purposes. Some computational
resources, such as memory, disk space, and
processing cycles, are relatively inexpensive
and so expenditure can solve the immediate
problem. Programmer time is much more
valuable, and speed should be measured as
person-hours from problem to solution rather
than simply as data processing time for a
single component of the system. Programmer
training need to look back 15 or 20 years when
hardware was expensive and rediscover
strategies that focus on coding finesse rather
than raw computational speed. Good code is
good code irrespective of computing power,
and the last decade has seen the growth of
profligate programming. Students often have
never dealt with size or computing constraints,
which is important when working with large
datasets such as genotype data. Software
engineering has evolved into a mature
discipline, and we need to re-learn and apply
good development practices that consider
scalability at the outset. Animal breeders

should seek out more formal training in
programming, rather than depending primarily
on self-learning. GPUs may be used to add
computing power where it is needed.

Acknowledgments

NVIDIA are acknowledged for their generous
gift of 6 CUDA enabled graphics cards for
research.

References

NVIDIA Corporation. 2011. CUDA: Parallel

Programming Made Easy.
http://www.nvidia.com/object/cuda_home_
new.html. Accessed August 9, 2011.

PORTING OF FEFLO TO GPUS
Corrigan A, Camelli F, L�ohner R, and Mut

F. V European Conference on
Computational Fluid Dynamics,
ECCOMAS CFD 2010, Lisbon,
Portugal,14-17 June 2010.

Table 1. Time to multiply a matrix by its transpose using a CPU or a GPU.

 Rows x
columns

1x1 2x2 4x4 8x8 16x16

CPU Matmul (seconds) 507s 512s 513s 534s 566s
 Time increase 101% 101% 105% 112%
GPU mmul x x 70s 94s 143s
 Time increase 134% 204%

GPU v CPU -86% -82% -75%

