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Abstract 
 
This study investigated genomic prediction using medium density and high density markers, based on 
data from Nordic Holstein and Red (RDC). The Holstein data comprised 4,539 progeny-tested bulls, 
and the RDC data 4,403 bulls. The data were divided into reference data and test data using 2001-10-
01 as a cut-off date (birth date of the bulls). This resulted in about 25% genotyped bulls in Nordic 
Holstein test data, and 20% in RDC test data. For each breed, three datasets of markers were used for 
predicting breeding values: 1) 50k dataset with some missing markers, 2) 50k dataset where missing 
markers were imputed, and 3) imputed HD dataset which was created by imputing the 50k data to HD 
data based on 557 bulls genotyped using 770k chip in Holstein, and 706 bulls in RDC. Based on the 
three marker datasets, direct genomic breeding values (DGV) for protein, fertility and udder health 
were predicted using a GBLUP model and a Bayesian mixture model with two normal distributions. 
Reliability of DGV was measured as squared correlations between de-regressed proofs (DRP) and 
DGV and then corrected for reliability of DRP, and unbiasedness was assessed by regression of DRP 
on DGV, based on the bulls in the test datasets. Averaged over the three traits, reliability of DGV 
based on the HD markers was 0.5% higher than that based on the 50k data in Holstein, and 1.0% 
higher in RDC. In addition, the HD markers led to an improvement on unbiasedness of DGV. The 
Bayesian mixture model led to 0.5% higher reliability than the GBLUP model in Holstein, but not in 
RDC. Compared with the raw 50k data, the imputed 50k data improved genomic prediction for protein 
in RDC. 
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1. Introduction 
  
One of the important factors affecting accuracy 
of genomic prediction is marker density. Higher 
marker density means that on average the 
markers will be in stronger linkage 
disequilibrium (LD) with genes affecting the 
trait of interest, which consequently should lead 
to better genomic predictions. 

 
Currently a medium density SNP chip with 

50k markers is in wide use for genomic 
prediction in dairy cattle. In 2010, a high 
density (HD) SNP chip with 770k markers was 
released. It is expected that the HD markers will 
lead to more accurate genomic predictions than 
the 50k markers do. However, simulation 
studies show that the advantage of HD markers 
in genomic  prediction is large  when few genes  

 
 

affect the trait (Meuwissen and Goddard, 2010), 
but very small in the case of a large number of 
genes affecting the trait (VanRaden et al., 
2011). 

 
Marker-QTL associations differ among 

populations. The differences are dependent on 
the genetic distances between populations. Thus 
the advantage in genomic prediction of 
changing to HD markers should be more 
profound for genomic prediction across 
populations than within population.  

 
The objective of this study is to compare 

genomic predictions using imputed HD markers 
and current 50k markers, based on the data 
from the Nordic Holstein and Red Dairy Cattle 
(RDC) populations.   
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2. Material and Methods 
 
2.1 Data 

 
The data used in this analysis were genotypes 
and de-regressed proofs (DRP) from Nordic 
Holstein and RDC populations. DRP were 
derived from genetic evaluations in 2010-11. 
The traits under analysis were protein, fertility 
and udder health. The Holstein data comprised 
4,539 progeny-tested bulls, and the RDC data 
4,403 bulls. The bulls were genotyped using the 
Illumina Bovine SNP50 BeadChip. Among the 
RDC bulls, 706 bulls were re-genotyped using 
770k chip. For Holstein, 557 bulls in the 
EuroGenomics project (Lund et al., 2009) were 
re-genotyped using the HD chip.   
  

The 50k genotypes were imputed to the HD 
genotypes using Beagle package (Browning and 
Browning, 2009), based on the marker data of 
the HD genotyped bulls. The markers in the 50k 
chip but not included in the HD chip were 
excluded in the imputation process. After 
imputation, the markers in complete linkage 
with the previous markers were removed. In 
order to investigate the effect of inferring 
missing marker on genomic prediction, the 
missing markers in the 50k data were also 
imputed using Beagle package. 

 
 For each breed, three datasets of markers 

were used for predicting breeding values: 1) 
raw 50k data with some missing markers, 2) 
imputed 50k data where missing markers in the 
50 data were imputed (50kimp), and 3) imputed 
HD data (HD). In RDC, markers of all 30 
chromosomes were used. But in Holstein, the X 
chromosome was excluded, because this 
chromosome was not as a part of exchanges in 
the EuroGenomics project. The number of 
markers used in genomic prediction is 46,847 in 
the 50k dataset and 528,595 in the HD dataset 
for RDC, and 43,415 in the 50k dataset and 
492,057 in the HD dataset for Holstein.  
 
 
2.2 Statistical models 
 
Direct genomic breeding values were predicted 
using two models. One is GBLUP model, the 
other is a Bayesian mixture model.   
 
GBLUP: The GBLUP model is  
 

eZg1y ++= μ  
 
where y is the vector of DRP, g is the vector of 
DGV, and e is the vector of residuals. 
 

It is assumed that g ~ N(0, Gσ2
g), and e ~ 

N(0, Dσ2
e), where G is a genomic relationship 

matrix,  σ2
g is genomic additive genetic 

variance, D is a diagonal matrix and  σ2
e is 

residual variance. G is defined as 
∑= iiqp2/MM'G where elements in column i 

of M are 0 - 2pi, 1 - 2pi and 2 - 2pi for 
genotypes A1A1, A1A2 and A2A2, respectively. 
D has diagonal element dii = (1-r2

DRP)/r2
DRP 

which is applied to account for heterogeneous 
residual variances due to different reliabilities 
of DRP (r2

DRP). 
   
Bayesian mixture: The Bayesian mixture 
model is 
 

eMq1y ++= μ  
 
where q is the vector of SNP genotype effects, 
M is defined as the above. 
 

The model assumes that a small proportion 
(π) of SNP have large effect and the rest have 
small effect. This is achieved by assuming that 
prior distribution of qi is either a normal 
distribution with a large variance (σ2

v1) or a 
normal distribution with small variance (σ2

v0), 
i.e., 
 
qi ~ (1-π) N(0, σ2

v0) + π N(0, σ2
v1) 

 
In the present study, π was set to be 0.05, 

0.10, 0.20 or 0.50 when using the 50k markers, 
and 0.005, 0.01, 0.02, or 0.05 when using the 
HD markers. These settings made such that the 
expected number of markers to be in the 
distribution with large variance of the mixture 
is almost the same when using the 50k markers 
and the HD markers.  
 
 
 2. 3 Validation 

 
The error rate of imputation from the 50k to the 
HD markers was assessed by a validation where 
the HD genotyped bulls were divided into 
reference and test data. For RDC, the test data 
contained 150 bulls, and for Holstein, the test 
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data consisted of 100 bulls. In the test data, the 
HD markers not in the 50k map were excluded, 
and then imputed. The error rate was calculated 
as the proportion of number of false alleles to 
total number of imputed alleles.   
 

In the validation of genomic prediction, the 
whole dataset in each breed was divided into 
reference (training) data and test data by the 
cut-off date 2001-10-01. Genomic predictions 
using different marker datasets and using 
different models was evaluated by comparing 
DGV and DRP for the animals in the test data. 
Reliability of DGV was measured as squared 
correlation between DGV and DRP, and then 
divided by reliability of DRP. Unbiasedness of 
genomic prediction was assessed by regression 
of DRP on DGV. 
 
 
3. Results 
 
3.1 Imputation error rate 

 
As shown in Table 1, allele error rate of 
imputation was 0.77% in Nordic Holstein 
population, and 0.96% for Nordic RDC 
population. In addition, there was a variation in 
error rates among the three RDC populations: 
Danish Red had a higher error rate (1.75%), and 
Finnish Ayrshire and Swedish Red had lower 
error rates (0.54% and 0.59%, respectively). 
The results indicate accurate imputation from 
the 50k to the HD markers.  
 
 
3.2 Genomic prediction in Nordic Holstein 

 
Reliabilities of genomic prediction for 
Holsteins based on the 50k and the HD markers 
using two alternative models are shown in 
Table 2. The HD markers led to an increase of 
reliability of DGV for protein and fertility, but 
not for udder health. On average, reliability of 
DGV based on the HD markers was 0.5% 
higher than that based on the 50k markers. It 
was observed that the Bayesian mixture model 
was superior to the GBLUP model, regardless 
of which marker dataset was used. On average, 
the increase of reliability using the Bayesian 
mixture model was 0.5%. On the other hand, 
imputation of missing markers in the 50k data 
did not yield any improvement of reliability of 
DGV.  
 

A necessary condition of unbiased genomic 
prediction is that the regression coefficient of 
DRP on genomic prediction is not far from one. 
As shown in Table 3, the HD markers led to 
less biased DGV for protein and fertility but not 
for udder health. The Bayesian model did not 
reduce bias of DGV. Imputing missing markers 
in the 50k data slightly increased bias compared 
to the raw 50k data.  

 
 

3.3 Genomic prediction in Nordic RDC  
 

The influences of models and marker datasets 
on reliability of DGV in Nordic RDC (Table 4) 
are somewhat different from those in Nordic 
Holstein. Imputing missing markers in the 50k 
data improved reliability of DGV for protein, 
but not for the other two traits. The Bayesian 
mixture model gave very similar reliability as 
GBLUP, based on the 50k markers, and was 
slightly better than GBLUP based on the HD 
markers. Applying the GBLUP model, 
reliability of DGV using the HD markers was 
on average 1.0% higher than using the raw 50k 
markers, and 0.7% higher than using the 
imputed 50k markers.  When applying the 
Bayesian mixture model, the increase of 
reliability using the HD markers was 1.20% and 
0.80%, respectively, compared with the raw 
50k and the imputed 50k markers.  
 

The regression coefficients of DRP on DGV 
were closer to one when DGV were predicted 
based on the HD makers, indicating a reduction 
of bias using HD markers. Similar to the 
Holstein population, the Bayesian mixture 
model did not reduce bias of DGV in RDC, 
regardless of the marker dataset used. But in 
contrast to Holstein, imputing missing markers 
in the 50k data reduced bias of DGV. 
 
 
4. Discussion 

 
This study investigated the advantage of using 
HD markers for genomic prediction. Based on 
the present data and models, reliability of DGV 
based on the HD markers was, on average, 
0.5% higher than that based on the 50k data in 
Holstein, and 1.0% in RDC. In addition, the HD 
markers led to a reduction of bias in genomic 
predictions. The results are consistent with 
simulation studies assuming a large number of 
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genes affecting the trait. VanRaden et al. 
(VanRaden et al., 2011) reported that increasing 
number of markers from 50k to 500k yielded a 
gain of 1.6% in their simulation study. Harris et 
al. (Harris and Johnson, 2010) reported very 
little gain when the number of markers 
increased from 20k to 1000k in a simulation 
study.  
 

The Nordic RDC in this study including the 
Finnish Ayrshire, Swedish Red and Danish Red 
populations. The gain of genomic prediction 
using the HD markers in RDC was larger than 
that in Holstein. This supports that HD markers 
give more benefit for genomic prediction across 
populations than within population, because the 
LD between genes with adjacent markers is not 
well preserved across populations in 50k 
markers but well in HD markers (Villa-Angulo 
et al., 2009).       

 
 The number of markers in the HD dataset is 
more than 10 times greater than the 50k dataset, 
thus there must be a much stronger LD between 
markers and genes affecting the trait of interest. 
Therefore it is expected that the HD markers 
will lead to much better genomic prediction. 
However, the current study shows that the gain 
from the HD markers is small. The following 
could be the possible reasons.  
 

Firstly, the advantage of increasing LD by 
HD markers may be counteracted by increasing 
the number of unknown parameters to be 
estimated. It may be necessary to reduce 
number of markers by deleting redundant 
markers which are non-informative for 
population genome structure. Secondly, the 
models in this study might not be optimal. More 
sophisticated variable selection models are 
required. Thirdly, the HD markers are not real 
markers genotyped using HD chip, but imputed 
ones. The actual imputation error rate may be 
higher than that indicated in the validation 
analysis, because the validation was based on 
real HD genotyped animals among which the 
relationship could be stronger than that the 
relationship between HD genotyped animals 
and 50k genotyped animals.  

 
 
 
 
 
 

In conclusion, the gain of genomic 
prediction using HD markers is small, based on 
current data and models. Further studies are 
needed before HD markers can be used for 
practical genomic prediction. 
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Table 1. Allele error rate of imputation in Holstein and RDC. 
Breed N_ref N_test Error rate % 
Holstein 457 100 0.77 
RDC 556 150 0.96 
 
 
Table 2. Reliability of DGV for Holstein using GBLUP and Bayesian mixture based on 50k and HD 
markers.  
Trait N GBLUP Bayesian mixture 

50k 50kimp HD 50k 
(π=0.2) 

50kimp 
(π=0.2) 

HD 
(π =0.02) 

Protein 1395 0.425 0.426 0.429 0.435 0.434 0.440 
Fertility 1378 0.404 0.403 0.413 0.406 0.406 0.416 
Udder health 1461 0.370 0.372 0.370 0.375 0.376 0.376 
Average 1411 0.400 0.400 0.404 0.405 0.405 0.410 
 
 
Table 3. Regression of DRP on DGV for Holstein using GBLUP and Bayesian mixture based on 50k 
and HD markers.  
Trait N GBLUP Bayesian mixture 

50k 50kimp HD 50k  
(π=0.2) 

50kimp 
(π=0.2) 

HD 
(π =0.02) 

Protein 1395 0.853 0.847 0.863 0.855 0.845 0.862 
Fertility 1378 0.972 0.963 0.994 0.968 0.958 0.996 
Udder health 1461 0.952 0.933 0.946 0.948 0.927 0.946 
Average 1411 0.926 0.914 0.934 0.924 0.910 0.935 
 
 
Table 4. Reliability of DGV for RDC using GBLUP and Bayesian mixture based on 50k and HD 
markers.  
Trait N GBLUP Bayesian mixture 

50k 50kimp HD 50k  
(π=0.2) 

50kimp 
(π=0.2) 

HD 
(π =0.02) 

Protein 923 0.346 0.358 0.358 0.346 0.357 0.359 
Fertility 940 0.297 0.293 0.304 0.299 0.296 0.307 
Udder health 978 0.244 0.246 0.257 0.243 0.248 0.259 
Average 947 0.296 0.299 0.306 0.296 0.300 0.308 
 
 
Table 5. Regression of DRP on DGV for RDC using GBLUP and Bayesian mixture based on 50k and 
HD markers.  
Trait N GBLUP Bayesian mixture 

50k 50kimp HD 50k  
(π=0.2) 

50kimp 
(π=0.2) 

HD 
(π =0.02) 

Protein 923 0.849 0.875 0.877 0.835 0.864 0.877 
Fertility 940 0.934 0.939 0.980 0.933 0.940 0.980 
Udder health 978 0.851 0.854 0.872 0.839 0.846 0.870 
Average 947 0.878 0.889 0.910 0.869 0.883 0.909 
 


