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Abstract  
 
The “single step approach” of Misztal et al (2009) and Christensen et al (2010) combines phenotypic, 
genomic and pedigree information into a single BLUP analysis. To adapt its implementation to most 
current genetic and genomic evaluation models, we propose an iterative solution procedure. Its main 
benefits are the fact that only moderate modifications of existing software are required and that it 
offers a framework for extension to more complex genetic or genomic models or their approximation.   
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Introduction 
 
The current genomic evaluation models 
implemented worldwide usually involve 
multiple steps: a) classical genetic evaluations from 
which b) corrected phenotypes such as daughter 
yield deviations (DYD) or deregressed proofs (DP) 
are obtained for a genotyped reference 
subpopulation; c) computation of direct genomic 
values (DGV); d) blending of genomic and 
phenotypic information. These successive steps 
may lead to biases, for example if genetic and 
genomic evaluations are not expressed on 
consistent scales or even more importantly, 
when only partial information is used. Patry and 
Ducrocq (2011a) showed that genomic pre-
selection of young bulls leads to biased genetic 
breeding values when candidates culled based 
on their DGV are not included, which in turn 
leads to biased DYD for genomic evaluations. 
Vitezica et al. (2011) showed that in presence 
of family-based selection, genotyped animals 
were not a random sample of the population, 
leading to bias as well. Another drawback of 
multiple step procedures is that non genotyped 
animals do not benefit directly from genomic 
information on relatives, except if another extra 
step is added (Patry and Ducrocq, 2011b).   
 

To circumvent these limitations, Misztal et 
al. (2009; see also Legarra et al., 2009; Aguilar 
et al., 2010) and Christensen and Lund (2010) 
proposed a single step approach in which a joint 

evaluation of phenotypic and genomic 
information is performed simultaneously for all 
animals. The approach appears as an extension 
of the usual mixed model equations (and 
therefore as an extension of GBLUP). The 
implementation of the single step approach is 
not complicated in the simplest cases but may 
become much more challenging for advanced 
models (test day, multiple trait, threshold 
models…) requiring demanding software 
adaptation. 
 

Our objective here is to develop an iterative 
procedure for the solution of the single step 
mixed model equations which requires only 
moderate software modifications and which can 
be adapted to a broad variety of genetic and 
genomic evaluation models. 
 
 
Methods 
 
The single step GBLUP model 
 
Consider a single trait analyzed with the classical 
mixed model for genetic evaluations:  
 
 y = Xb + Wu + e        (1) 
 
with the usual notations.  
 

Let the subscripts 1 and 2 correspond to non 
genotyped and genotyped animals respectively, 
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A A
 be the 

numerator relationship matrix. Assume 
2

2 uvar(  ) = σu G ,  Note that G may be a 
genomic relationship matrix (VanRaden, 2009) 
but can have other forms too, if another 
genomic evaluation method is preferred; for 
instance, Zhang et al. (2010) and Legarra et al. 
(2011) suggested to (pre-)estimate G through, 
respectively, BayesB or the Bayesian Lasso, 
giving more weight to SNPs of large effect. 
 

The mixed model equations for the single 
step approach are: 

 

1
u
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Another parameterization 
 
In (1), one can decompose the additive genetic 
value u into a “strictly polygenic” part u* and 
an independent deviation d due to genomic 
information, with d=u-u*, so: 
 
  y = Xb + W (u*+d) + e     (3) 
 

The deviation d1 for non genotyped 
information is obtained by regression on 
genomic contribution 2d  from genotyped 
individuals: 

  
 1 12 22 2

−= 1d A A d  (4) 
 

Therefore, model (1) can be written as: 
 

*
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   (5)                                                     
 

If 2
2 uvar(  ) = σu G  and assuming that 

*
2 2cov( , ) =u d 0 , we have: 

 

     * 2
2 2 2 22 u 2var( )= var( ) var( )+ = σ +u u d A d   

 
It follows that 2

2 22 uvar( )= )( − σd G A    
 

The corresponding mixed model equations 
are of the form M* x*=z*, i.e.:  
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  with M* equal to:  
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System (6) is equivalent to: 
 
  S-TM*(S-1S) x*=S-Tz* (8) 
 

The development of expression (8) leads to a 
system M x= z where: 
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and:  
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Using the rules for the inverse of a partitioned 
matrix (Searle, 1982), we have: 
 

'
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Therefore, system (8) simplifies to: 
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Applying again the rules for the inverse of a 
partitioned matrix (Searle, 1982), it can be 
shown that the absorption of the last equation of 
system (10) into the first ones leads to system 
(2): models (1) and (3) are equivalent.  
 
 

An iterative solution of the single step mixed 
model equations 
 
Isolating the first three blocks of equations in 
(10) from the last one suggests the following 
iterative solution procedure:  
 
    Algorithm A: 
A0) Assume 2

ˆ = d 0  
A1) Solve for b, u1 and u2: 

' ' ' '
1 1 2 2 1 1 2 2

' ' 11 12
1 1 1 1 u u 1
' 21 ' 22
2 2 u 2 2 u 2
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'
1 1
'
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                               (11)
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A2) Solve for d2: 
 
 

22 22 2 22 2ˆ( )− − − + − = 
1 1 1A G A d A u  (12) 

 
A3) Iterate A1) and A2) until convergence 
 
At convergence, equation (12) is: 
 

 22 22 2 22 2
ˆ ˆ( )   =   − − − + − 

1 1 1A G A d A u   
or:        

     *
22 2 22 2 2 22 2

ˆ ˆˆ ˆ( )  =   ( - )=   − − −− 1 1 1G A d A u d A u   
 
After manipulations, it follows that:  
 
 1

2 2 22 2
ˆ ˆ ˆ−= −d u A G u     (13) 

 
and therefore * 1

2 22 2ˆ ˆ−=u A G u .                     (14) 
 

Now, if we plug expression (13) into the 
second term of the right hand side of (11), we 
have: 

 
1

u 22 2 u 22 2 2 u A G
ˆ ˆ ˆˆ ˆ( ) ( )− − −α = α − = α −1 1A d A u G u t t

 
 
The solution algorithm becomes (Algorithm B): 
 
B0) Assume 2

ˆ = d 0  
B1) Solve (11) for  b, u1 and u2 
B2) Compute 1

A 22 2ˆ−=t A u  

       or solve 22 A 2ˆ=A t u for tA 

B3) Compute G 2ˆ−= 1t G u  
       or solve G 2ˆ=Gt u for tG 
B4) Iterate B1) and B2) until convergence 

 

Note that in the iterative algorithm, the 
genomic information is included only at one 
place, for the computation of tG in step B3. One 
can use here a G matrix corresponding to any 
genomic evaluation method, e.g., Bayes A to Z, 
Lasso, PLS, Elastic Net … or a BLUP on QTL 
as in the French genomic evaluation (Boichard 
et al., 2010). All computations remain 
unchanged as long as tA and tG are consistent, 
i.e., as long as G is really equal to var(u2).  
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Adaptation when the genomic evaluation is 
not GBLUP  
 
So far, we assumed that 2û  in step B3 came 
from (11) but it can also be obtained using 
existing genomic evaluation software. After all, 
the solutions must be the same at convergence, 
if exactly the same information is used.  
 

There are several reasons to prefer such 
strategy: first, we are not only interested in the 
GEBV ( 2û ) but also in the estimated (SNP or 
haplotype) markers effects. Second, there may 
be some phenotypes from genotyped animals 
that we would like to exclude from the genomic 
evaluation part: for example, in most European 
countries and Canada, own records from bull 
dams are excluded for the estimation of marker 
effects, because of fear of preferential 
treatment. Third and perhaps even more 
importantly, there may also be some extra 
phenotypes from genotyped reference animals 
that we would like to include in the genomic 
evaluation part only. A typical example is 
phenotypes (usually deregressed international 
EBV) from foreign bulls in multinational reference 
populations. Finally, genomic evaluations software 
are already available and our goal is to minimize 
changes compared to the existing situations.  
 

  The iterative nature of Algorithms A or B 
suggests to use (11) to compute at each iteration 
corrected phenotypes (DYD or DP) to be used 
as input data in the genomic evaluation 
software. For example, suppose that we are 
interested in genotyped males. For each one of 
them, one can correct their daughters’ records 
for fixed effects and half their mates’ EBV and 
absorb the corresponding equations as it is 
currently done. This leads to a system: 

 

( )22
2 2 2 2 2 2 2 22

−Ψ + α = Ψ − α' '
u u 2ˆ ˆˆ  ( ) 1W W A u W DYD A d

  (15) 
 
for which it is hoped that 2 2≈ˆ ˆu u , where 2Ψ is 
a diagonal matrix of EDC (Equivalent daughter 
contribution) and 2ˆDYD  is a vector of DYD 
updated at each iteration for the current values 
of β 1ˆand ˆ  u . 
 

Take as an example a BLUP evaluation on 
QTL haplotypes (Boichard et al, 2010), which 
can be written as: 

 
 ( )1 2= µ + + + + ε∑*

i i ij ij i
j

y a h h  ( 16) 

where *
iy is a corrected phenotype (DYD or 

DP), hij1 and hij2 are haplotype effects 1 and 2 at 
QTL j for animal i and ui is a residual polygenic 
effect. In matrix notation,  
 
 = µ + + +*y 1 a Nhε   
 
where N is the incidence matrix relating 
phenotypes to haplotypes. Let F be proportional 
to the (co)variance matrix of haplotype effects 
and θ  the proportion of the total genetic 
variance attributed to QTL. Then the genomic 
evaluation software currently used can be run at 
each iteration of  Algorithm B to get estimates 
of a, h and the relevant elements of 2u  as well 
as tG, using:   
 

22

Var( ) (1 )Var( ) Var( )
    = (1 )  '                        (17)

= + = − θ + θ
− θ + θ

G a Nh a Nh
A NFN

  
Discussion 
 
The interest of an iterative approach is 
conceptual as well as computational: Splitting 
the evaluation into two separates the difficulty 
(and wealth) of national evaluations with their 
(trait dependent) complex models (huge data 
sets, multiple traits, heterogeneity of variances, 
unknown parent groups, threshold models, etc) 
from that of the genomic evaluation, with other 
problems (modeling, imputation of missing 
genotypes, computations…). It allows us to 
focus on one problem at a time.  
 

Modifying a national evaluation software to 
include a correction of the right hand side 
should be relatively easy. Further, because these 
are two separate procedures, changing one does 
not imply to change the other. Moving, for 
instance, from GBLUP to BayesB or any other 
approach would imply changing just a part (B3) 
of the system. The fact that the method applies 
to any genomic evaluation system, not only to 
GBLUP, as far as G describes covariances 
among breeding values (as emphasized by 
Legarra et al., 2009) must be underlined.  
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The computations as described are rather 
simple. Matrices G and A22 (and their inverses) 
can be stored in core for small numbers of 
genotyped animals. For large numbers, B2 and 
B3 can be solved by iteration on data, 
repeatedly computing the products GGt and 

22 AA t . For example for GBLUP, the first 
product can be computed as Z ( Λ ( Z’ tG ) ), 
where Z describes the genotypes of u2 and Λ is 
a diagonal matrix at a cost of O(mp) operations 
if m is the number of genotyped animals and p 
the number of markers; the second product can 
be calculated using Colleau’s algorithm, at a 
cost of O(n) operations where n is the number 
of animals related to the genotyped ones. This 
algorithm computes the product =w At  as the 
solution to the system 

1 1 1− − − −= =TA w T D T w t , i.e., solving twice an 
extremely sparse triangular system of equations 
by reading the pedigree file twice. In order to 
compute 22 AA t , some appropriate elements of 
t have to be set equal to 0. Misztal et al. (2009) 
and Aguilar et al. (2011) describe the algorithm 
and provide a Fortran code. 
 

An unsolved problem is the estimation of 
reliabilities because for large applications, the 
inverses of G and A22 will not be available. But 
the decomposition (5) isolating the contribution 
of the genomic information independent from 
the rest suggests that an extension of the 
approach of Harris and Johnson (1998) could 
perhaps be conceived. 
 

A pertinent question is: why should one 
consider a single step evaluation if current 
multi-step evaluations work? One reason is the 
problem of bias above mentioned. Bias will 
plague national evaluations if early selection 
based on genomic proofs becomes a rule. But 
the other reason is the elegance and power of a 
single, unified framework, such as BLUP was 
in relation to contemporary comparison or 
selection indexes.    (20) 
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