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Abstract 
 
Several studies have shown that computation of genomic estimated breeding values (GEBV) with 
accuracies significantly greater than parent average EBV requires genotyping of at least several thousand 
progeny-tested bulls.  For all published analyses, GEBV computed from selected samples of markers have 
lower or equal accuracy than GEBV derived based on all valid SNPs. In the current study we report on 
four new methods for selection of markers.  Milk, fat, protein, somatic cell score, fertility, persistency, 
herd-life, and the Israeli selection index were analyzed. The 969 Israel Holstein bulls genotyped with EBV 
for milk production traits computed from daughter records in November, 2011, were assigned into a 
training set of 829 bulls with progeny test EBV in June, 2008, and a validation set of 140 young bulls.  
Numbers of bulls in the two sets varied slightly among the nonproduction traits.  In Method 1, SNPs were 
first selected for each trait based on a linear model analysis of the effect of each marker on the bulls’ 
current EBV for each trait.  A subset of these SNP then was analyzed by a REML model including 
relationships.  Method 2 was the same as Method 1, except that that the dependent variable was the 2008 
EBV.  In Method 3, the SNPs with the greatest effects on the 2008 EBV, as determined by the REML 
analysis were deleted.  Of the remaining SNPs, the markers with the greatest effects on 2011 EBV were 
retained.  In Method 4, the SNPs with the greatest effects on the 2008 EBV, as determined by the REML 
analysis were deleted.  Of the remaining SNPs, the markers with the greatest change in allele frequency 
between the bulls in the training set, and the validation bulls were retained for analysis.   For all methods, 
the numbers of SNPs deleted and retained were varied to obtain a maximum correlation between the 
GEBV and EBV of the validation bulls.  In Methods 1 and 2, the number of SNPs included in the analyses 
was varied over the range of 400 to 6000.  For each trait, except fertility, an optimum number of markers 
between 600 and 2000 was obtained for Method 1, based on the correlation between the GEBV and 
current EBV of the validation bulls. For all traits, the difference between the correlation of GEBV and 
current EBV and the correlation of the parent average and current EBV was >0.1.  Method 2 was inferior 
to Method 1 and generally no better than parent average EBV, but Method 3 outperformed Method 1.  
Even Method 4, in which selection of markers is based only on information available at the time the 
training set is generated, correlations between GEBV and current EBV were on the average 0.042 higher 
than correlations of parent averages with current EBV.  Furthermore, GEBV were less biased than parent 
averages.  It is likely that other methods of SNP selection could improve upon these results.  
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Introduction 
 
All of the large dairy cattle populations have 
already genotyped thousands of bulls with 
genetic evaluations based on progeny tests for 
the Illumina BovineSNP50 BeadChip. Beginning 
in 2008 a large number of studies have proposed 
methods for genomic evaluations in dairy cattle.  
Most studies have used variations of the method 
of VanRaden (2008) in which the dependent 
variable is either the bulls’ daughter-yield-
deviations or deregressed estimated breeding 
values (EBV), and the independent variables are 
the genotypes of all valid SNPs.  Genomic EBV 
(GEBV) are then derived as an index of the sum 
of SNP effects, the parent average EBV (PA) 
and other factors.  In nearly all cases, GEBV 
were evaluated by dividing the population of 
sires with genotypes and EBV based on progeny 
tests into a “training set,” consisting generally of 
older bulls, and a “validation set” of younger 
bulls.  The effects of the SNP and the regression 
coefficients for the final index are derived from 
the training set, and these values are then used to 
derive GEBV for the validation set, based only 
on PA and genotypes.  The GEBV of the 
validation bulls are then compared to their 
current EBV.    
 

Coefficients of determination for the GEBV 
in the training set are nearly always much higher 
than correlations of GEBV with current EBV in 
the validation set, especially if bulls are assigned 
to the two groups based on birth dates.  A 
possible explanation is that linkage relationships 
and the segregating quantitative trait loci change 
over time (Moser et al., 2009).  Glick et al. 
(2012) found that out of the15,485 haplotypes 
with population frequencies between 5% and 
95% in the population of Israeli Holstein bulls 
born since 1984, 930 haplotypes (6%) underwent 
significant changes in allelic frequencies, 
resulting in frequencies of either <10% or >90% 
for the bulls born between 2004 and 2008.  
 

Various studies have proposed computation 
of GEBV based on subsets of SNPs.  Three basic 
strategies have been proposed to select SNPs: 

 
 
 

1. Random (Vazquez et al., 2010). 
2. Equally spaced throughout the genome  

(Habier et al., 2009; Moser et al., 2010; 
VanRaden et al., 2009; Vazquez et al., 
2010; Weigel et al., 2009; Zhang et al., 
2011). 

3. Markers with the greatest effects on the 
trait analyzed, as estimated from the 
analysis of all markers (Moser et al., 
2010; Vazquez et al., 2010; Weigle et 
al., 2009; Zhang et al., 2011).  

 
Although accuracies nearly equal to analysis 

with all markers were obtained with subsets of 
markers, the accuracy of GEBV computed from 
subsets of markers is never significantly more 
than the accuracy of GEBV computed from 
analysis of all markers. 
  

Unlike the effect of increasing the number of 
markers, which reaches a plateau for several 
thousand, increasing the number of bulls 
analyzed results in more accurate GEBV over 
the entire range tested to date.  Furthermore, the 
accuracy of GEBV for young bulls computed 
from analysis of <1000 bulls in the training set is 
no higher than the accuracy of PA (e. g., 
VanRaden et al., 2009).  Bayesian “shrinkage” 
of marker effects improves accuracy of GEBV at 
best marginally.  
 

In the current study we report on a four new 
methods for selection of markers for inclusion in 
analysis, and demonstrate that the accuracy of 
GEBV based on selected sets of marker can be 
greater than GEBV based on all valid markers.  
We also demonstrate that GEBV with higher 
accuracy than PA can be derived, even though 
the training set includes <1000 bulls. 
 
 
Material and Methods 
 
The data set and traits analyzed 
 
All valid records from the Israeli Holstein 
population from January, 1985, through 
November,  2011,  were included in the analysis.   
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Eight traits were analyzed; milk fat, and protein 
production, somatic cell score (SCS), female 
fertility, persistency of milk production, herd-
life, and PD11, the current Israeli breeding 
index.  Multitrait animal model EBV were 
computed for milk, fat, protein, SCS, female 
fertility, and persistency, with each parity 
considered a separate trait as described by 
Weller & Ezra (2004) and Weller et al. (2006).  
Parities 1-5 were included in the analyses.  
Female fertility was computed as the inverse of 
the number of inseminations to conception 
(Weller and Ezra, 1997).  Single-trait animal-
model EBV were computed for herd-life as 
described (Settar and Weller, 1999). 
 

The complete data set was divided into a 
“training set,” records generated prior to June, 
2008; and the “validation set,” records generated 
from June, 2008.  The difference of 3.5 years 
between validation set and the complete data set 
was chosen to mimic the actual dairy situation in 
that young bulls reach sexual maturity at the age 
of one year, and obtain their first EBV based on 
daughter records at approximately 4.5 years.   

 
Modified daughter-yield-deviations (MDYD), 

weighted means of daughter records corrected 
for herd-year-season and parity effects; were 
computed for each bull with valid daughter 
records in the training set, using records prior to 
June, 2008.  Only bulls with at least 20 effective 
daughters for milk production traits, 5 effective 
daughters for SCS and persistency, 2 effective 
daughters for fertility, and 1 valid daughter for 
herd-life were included in the analysis of each 
trait.  In addition, current MDYD were computed 
based on all records in the complete data set. 

 
 

Animals genotyped and validation of SNPs 
 
A total of 1359 bulls and calves were genotyped, 
912 bulls for the 54001 SNP BeadChip, and 447 
for the 54,609 SNP BovineSNP50 v2 BeadChip.  
The numbers of bulls genotyped by birth year 
are given in Figure 1.  Birth years ranged from 
1975 through 2011.  The numbers of bulls with 
genotypes and MDYD in the training and 
validation data sets by trait are given in Table 1. 
 

 

SNPs were deleted from analysis if:   
 

1. They did not appear on the original 
Beadchip. 

2. The frequency of the less frequent allele 
< 0.05. 

3. There were valid genotypes for < half of 
the animals genotyped. 

4. The genotypes of two consecutive SNPs 
were identical for > 95% of the animals 
with valid genotypes.  In this case the 
second SNP was deleted.  

 
After edits there were 39,816 valid SNPs. 

Table 1.  The number of bulls with genotypes 
and MDYD in the training and validation data 
sets by trait. 
Trait analyzed  Number of bulls 
 Training  Validation  
Milk (kgs)  829 140 
Fat (kgs)  829 140 
Protein (kgs)  829 140 
SCS  785 121 
Female fertility (%)  835 139 
Persistency (%)  827 129 
Herdlife (days)  846 129 
Israeli Index  760 110 
 

Figure 1.  Numbers of bulls with genotypes by birth 
year. 
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Calculations of genomic evaluations and 
selection of SNPs 
 
The method of VanRaden (2008) was used to 
compute marker effects on the MDYD from the 
training set for each trait.  Regression 
coefficients for the sum of marker effects, PA 
and birth year effects were then computed from 
the training data set, using all bulls with 
genotypes, MDYD, and EBV for dams based on 
at least one lactation record.   

 
The regression coefficients derived from the 

training set were then used to compute GEBV 
for the “validation bulls,” bulls with MDYD in 
the total population and dam EBV based on at 
least one lactation record, but without EBV 
based on daughter records in the validation set.  
The GEBV of the validation bulls and their PA 
were compared to their November, 2011, EBV 
and MDYD computed from the complete data 
set.  GEBV were computed as described for 
protein and female fertility using all valid 
markers and using each 20th valid SNP.   

 
Four additional methods were used to select 

subsets of SNPs for analysis.  In Method 1, SNPs 
were first selected for each trait based on a linear 
model analysis of the effect of each marker on 
the bulls’ November, 2011, EBV for each trait.  
A subset of these SNP was analyzed by a REML 
model including relationships.  In both steps 
each SNP was analyzed separately. The number 
of SNPs included in the analysis was varied over 
the range of 400 to 6000 to obtain an optimum.  
Method 2 was the same as Method 1, except that 
that the dependent variables were the bulls’ June, 
2008, EBV.  

 
 
 

In Method 3, the SNPs with the greatest 
effects on the 2008 EBV, as determined by the 
REML analysis were deleted.  Of the remaining 
SNPs, the markers with the greatest effects on 
2011 EBV were retained.  In Method 4, the 
SNPs with the greatest effects on the 2008 EBV, 
as determined by the REML analysis were 
deleted.  Of the remaining SNPs, the markers 
with the greatest change in allele frequency 
between the bulls in the training set, and the 
validation bulls were retained for analysis.  For 
Methods 3 and 4, the numbers of SNPs deleted 
and retained were varied to obtain a maximum 
correlation between the GEBV and EBV of the 
validation bulls. 

 
Correlations of the GEBV of the validation 

bulls with their current EBV were compared to 
the correlations of their PA with their EBV.  
Since the PA has a major effect on EBV of low 
heritability traits, even with >50 daughters, 
correlations of GEBV and PA with current 
MDYD were also computed.   In addition, to 
estimate bias of PA and GEBV, relative to the 
current EBV, regressions of PA and GEBV on 
current EBV were computed, and means and 
standard deviations of PA, GEBV and current 
EBV were compared.  
 
 
Results and Discussion 
 
Correlations of GEBV and PA with current EBV 
and MDYD from analysis of all SNPs and 
equally spaced SNPs are given in Table 2.  With 
all valid SNPs, correlations of GEBV with 
current EBV and MDYD were slightly higher 
than parent averages for fertility, but lower for 
protein.  With <2000 approximately evenly 
spaced SNPs, correlations of GEBV with current 
EBV were lower than PA for both traits.  
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The correlations between the Method 1 
GEBV and current EBV as a function of the 
number of SNPs included in the analysis are 
plotted in Figure 2.  There was a clear optimum  

 
 

 
for all the traits, except for fertility.  The 
optimum number of markers was between 600 
and 6000 for all of the traits analyzed.   

 

 
Figure 2.  Correlations between Method 1 GEBV and current EBV as a function of the numbers of SNPs 
included in the analysis. 

 
Correlations of Method 1 GEBV and PA with 

current EBV and MDYD with optimum number 
of SNPs are given in Table 3. The correlations of 
GEBV with current EBV and MDYD were 
higher than the correlations of PA with EBV and 
MDYD for all traits.  The mean difference in the 
correlations between GEBV and PA was 0.18.  

Differences in correlations between PA and 
GEBV with current EBV and MDYD were 
similar for all traits.  The greatest differences in 
correlations were obtained for PD11 for both 
EBV and MDYD, close to 0.3.  Correlations 
between GEBV and EBV were higher for 
fertility and persistency, which have low 
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Table 2.  Correlations of GEBV and parent averages with 
current EBV and MDYD from analysis of all SNPs and 
equally spaced SNPs. 

  Correlations with current values 

Trait No.  EBV MDYD 

 SNPs PA GEBV PA GEBV 

Protein 39,816 0.39 0.36 0.41 0.36 

 1991  0.36  0.36 

Fertility 39,816 0.66 0.67 0.36 0.41 

 1991  0.62  0.37 
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heritability, due to the greater contribution of PA 
to EBV; while correlations of GEBV and PA 
with MDYD were lower. All correlations were 

lower for herd-life, which has only one record 
per cow.  For protein the correlations of EBV 
with GEBV and PA were 0.59 and 0.39.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Method 1, the SNPs were selected based 
on their November, 2011, EBV.  In Method 2 
SNPs were selected by the same procedure, but 
the dependent variables were the 2008 EBV.  
Correlations of the Method 2 GEBV with current 
EBV and MDYD are given in Table 4.  The 
Method 2 correlations were lower than the 
Method 1 correlations for all traits for both 
current EBV and MDYD.   Correlations of 
Method 2 GEBV with current EBV were higher 
than the PA correlations only for fat and herd-
life.  In the analysis of the validation set, the 
effect of PA was highly correlated with the sum 
of the SNP effects.  Thus both the GEBV and PA 
detected the same QTL.  However, as noted 
previously (Glick et al., 2012) the QTL 
segregating in the validation bulls are not the 
same as those segregating in the training 
population.  In order to improve GEBV, it is 
necessary to include markers linked to QTL that 
are not segregating in the training set.   

 
Correlations of Method 3 GEBV and PA with 

current EBV and MDYD with optimum number 
of SNPs are given in Table 5. The optimum 
number of markers deleted was 5000 for all 
traits, except protein. The optimum number of 

markers included ranged from 1000 to 1700.  In 
nearly all cases the correlations of the GEBV 
with EBV and MDYD were higher with Method 
3 than Method 1. The mean difference in the 
correlations between GEBV and parent averages 
was 0.26.  Method 3 also used information not 
available in June, 2008. 

 
The mean difference in the SNP allelic 

frequencies was 0.05, and the maximum 
difference was 0.3.  Five percent of the SNPs 
(1786) had differences > 0.12. Correlations of 
Method 4 GEBV and PA with current EBV and 
MDYD with optimum number of SNPs are 
presented in Table 5. The optimum number of 
markers deleted ranged from 200 for fat to 8000 
for persistency.  The optimum number of 
markers included ranged from 800 for SCS to 
9000 for persistency.  For all traits, except for 
milk, the correlations of the GEBV with EBV 
and MDYD were higher than the correlations of 
parent averages with EBV and MDYD.  The 
mean difference in the correlations between 
GEBV and parent averages was 0.042.  This 
method, unlike Methods 1 and 3, only used 
information available in June, 2008. 

Table 3.  Correlations of Method 1 GEBV and parent 
averages with current EBV and MDYD with optimum number 
of SNPs. 
  Correlations 

Traits  Optimum EBV with: MDYD with: 

 No. SNPs PA GEBV PA GEBV 
Milk  600 0.55 0.69 0.56 0.67 
Fat  1200 0.44 0.66 0.34 0.61 
Protein  2000 0.39 0.59 0.41 0.57 
SCS  600 0.53 0.66 0.42 0.60 
Fertility  6000 0.65 0.73 0.36 0.49 
Persistency  1000 0.60 0.71 0.45 0.62 
Herdlife  800 0.37 0.54 0.17 0.35 
PD11  1800 0.37 0.64 0.28 0.58 
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Table 4.  Correlations of Method 2 GEBV with current EBV and 
MDYD with optimum number of SNPs. 

Traits  Optimum Correlations 
 No. SNPs EBV MDYD 
Milk  800 0.51 0.51 
Fat  1500 0.51 0.46 
Protein  1000 0.35 0.35 
SCS  800 0.52 0.42 
Fertility  300 0.65 0.42 
Persistency  4900 0.59 0.46 
Herdlife  1500 0.40 0.16 
PD11  2500 0.29 0.31 

 
 

Table 5.  Correlations of Method 3 GEBV with current EBV and 
MDYD with optimum number of SNPs. 

Traits  Optimum No. SNPs Correlations 

 deleted Included EBV MDYD 
Milk  5000 1200 0.77 0.76 
Fat  5000 1700 0.72 0.65 
Protein  4000 1000 0.75 0.74 
SCS  5000 1200 0.77 0.68 
Fertility  5000 1200 0.79 0.53 
Persistency  5000 1600 0.80 0.68 
Herdlife  5000 1400 0.57 0.33 
PD11  5000 1600 0.76 0.69 

 
 

Table 6.  Correlations of Method 4 GEBV and parent averages 
with current EBV and MDYD with optimum number of SNPs. 
Traits  Optimum No. SNPs Correlations 

 deleted included EBV MDYD 
Milk  500 2000 0.48 0.48 
Fat  200 1000 0.52 0.43 
Protein  1200 1500 0.47 0.48 
SCS  1000 800 0.56 0.48 
Fertility  1500 2000 0.66 0.39 
Persistency  8000 9000 0.65 0.54 
Herdlife  500 2000 0.43 0.21 
PD11  800 1500 0.41 0.38 
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Genetic evaluations are unbiased if the means 
are equal to the means of the true genetic values 
and the regressions of EBV on true genetic 
values are equal to unity.  Since true genetic 
values are unknown, GEBV and PA were 
compared to current EBV.  Regressions and 
coefficients of determination of PA and Method 
4 GEBV on EBV are presented in Table  

 
 
 
 
 
 

6, and means and standard deviations of PA, 
Method 4 GEBV and current EBV are given in 
Table 7.  For both PA and GEBV regressions 
were close to unity for all traits.  With respect to 
means, GEBV were less biased than PA for milk 
production traits and PD11. Coefficients of 
determination for GEBV were higher than for 
PA for all traits except for milk production. 

 
 
 
 
 
 
 
 
 
Conclusions 
 
GEBV derived from selected sets of markers can 
outperform GEBV derived from analysis of all 
markers.  GEBV derived from selected sets of 
markers can outperform parent averages, even if 
the training population includes <1000 bulls. 
Using the optimum strategy correlations of 
GEBV with current EBV were 0.2 higher than 
correlations of PA with current EBV.  Even if 

selection of markers is based only on 
information available at the time the training set 
is generated, it is still possible to select sets of 
markers that yield correlations between GEBV 
and current EBV of 0.042 higher than 
correlations of PA with current EBV.  
Furthermore, GEBV were less biased than parent 
averages.  It is likely that other methods of 
selection could improve upon these results.   

 
Table 8. Means and standard deviations of parent averages, Method 4 GEBV and current EBV. 
 

Traits Means  Standard deviations 
 PA GEBV EBV  PA GEBV EBV 

Milk  237 -0 120  183 205 336 
Fat  15.8 13.9 13.0  6.9 6.1 13.3 
Protein  12.6 10.7 10.9  4.0 3.9 8.7 
SCS  -0.081 -0.092 -0.101  0.12 0.15 0.20 
Fertility  0.36 0.28 0.57  1.50 1.74 2.44 
Persistency  0.57 0.54 -0.16  1.34 1.26 2.16 
Herdlife  55 60 51  41.3 42.2 83.5  
PD11  466 377 370  127 124 335  

Table 7.  Regressions and coefficients of determination of 
parent averages and Method 4 GEBV on EBV. 

Traits  Regression on 
EBV 

 Coefficient of 
determination 

 PA GEBV  PA GEBV 
Milk  1.00 0.79  0.30 0.23 
Fat  0.85 1.13  0.20 0.27 
Protein  0.87 1.06  0.16 0.22 
SCS  0.85 0.76  0.28 0.31 
Fertility  1.07 0.93  0.43 0.44 
Persistency  0.96 1.12  0.36 0.42 
Herdlife  0.75 0.86  0.14 0.19 
PD11  0.89 1.11  0.13 0.17 
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