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Abstract 
 
The single-step method of genomic evaluation for milk volume, fat yield and protein yield was applied 
to the national dairy herd of New Zealand.  Genomic information from a 50K SNP chip was available 
on 5402 Holstein Friesian (HF), Jersey (J) and  HFxJ sires.  The genomic relationship matrix (GRM) 
or the Euclidean distance matrix (EDM) in a Gaussian kernel was used to augment the pedigree-based 
relationship matrix in the mixed model equations.  Scale parameters of 0.3, 0.5 and 0.7 were used for 
the GRM and 0.5, 0.7 and 0.9 for the EDM.   Traditional breeding values (BVs) were compared to 
genomic breeding values (GBVs) in two youngest cohorts of the progeny-tested sires (N=525).  An 
increasing scale parameter was associated with an increased inflation of the GBVs.  The EDM resulted 
in  lower inflation of fat GBVs than the GRM.  The effect was smaller and more variable for the other 
traits.   Augmenting the relationship matrix with the GRM versus the EDM and changing the 
magnitude of the scale parameters had little impact on the accuracy of the evaluation.  
___________________________________________________________________________ 
 
Introduction 
 
A single-step method of genomic evaluation, 
that simultaneously uses phenotypic, genomic 
and relationship information, was first 
proposed by Misztal et al. (2009).  The method 
entails augmenting the pedigree-based 
relationship matrix by a genomic relationship 
matrix (GRM) that is then incorporated into 
the mixed model equations (MME). Misztal et 
al. (2010) have enhanced the single-step 
method by modifying the augmented 
relationship matrix to adjust for the scale of the 
genomic predictions, thereby providing a way 
to adjust for inflation of the genomic breeding 
values (GBVs). The calculation of the GRM 
requires estimates of the base population SNP 
frequencies.  This is straightforward in single-
breed evaluations.  However, because SNP 
frequencies differ by breed, an across-breed 
evaluation has multiple base populations, with 
crossbred animals descending from more than 
one population.  Harris and Johnson (2010) 
describe a method to adjust the GRM for a 
multi-breed, pure-and crossbred population. 
The method requires the individual animal 
breed proportions to be known and is 
computationally intensive.  The Euclidean 
distance matrix (EDM) in a Gaussian kernel, 
proposed by Gianola and van Kaam (2008) is 
an alternative method of incorporating 
genomic information into the MME that does 

not require information on individual breed 
proportions. 
 

The aim of this study was to assess the 
single-step method of genomic evaluation for 
milk volume, fat yield and protein yield in the 
New Zealand (NZ) dairy population.  A full 
description of current across-breed, multiple-
trait (MT) random regression (RR) test-day 
model (TDM) used for national genetic 
evaluation is provided by Harris et al. (2006).  
Genomic information of sires was included in 
the MME via either the GRM or the EDM.  
The accuracy and inflation of the genomically 
enhance evaluations was assessed by 
regressing the traditional breeding values 
(BVs) on the GBVs. 

 
 
Methods and Materials 
 
Data 
 
Herd test data for milk volume, fat yield and 
protein yield extracted from NZ’s national 
database were used in this study.  The data 
included records from seasons 1986 to 2011 
(In NZ, a season starts in June and ends in May 
the next year.  Hence, an animal calving in 
season 2011 finishes her lactation in 2012).  
Pedigree data and breed information from the 
1940s onwards were used to calculate the 
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additive genetic relationship matrix and 
genetic groups.   The data set included a total 
of 171,994,721 testday records from 
22,483,802 animals (cows and ancestors).  The 
cow population consisted primarily of Holstein 
Friesians (HF) (52%), Jerseys (J) (18%) and 
Friesian-Jersey Crosses (HFxJ) (29%), with 
the remaining cows being other crosses and 
breeds.  A total of  5,402 sires born in seasons 
1965 through 2007 were genotyped on the 50K 
SNP chip (which contained 38,108 SNPs after 
quality control). 
 
 
Statistical Model for National Genetic 
Evaluation 
 
The model for the national genetic evaluation 
of each production trait was a MT RR TDM 
where lactations 1, 2, 3 and lactations 4 
through 6 are modelled as different genetic 
traits. Separate random permanent 
environmental effects were fitted for each of 
the 6 lactations. The order of the MME for 
each trait was approximately 550 millon. Full 
details of the statistical model are given by 
Harris et al. (2006). BVs were calculated for 
days 3 to 270 within each lactation.  Results 
for the BVs averaged over the 4 lactations are 
used in this study.  
 

Genomic information was included in the 
national evaluation using the single-step 
method (Misztal et al., 2009).  For this 
method, the pedigree-based relationship matrix 
was augmented by either the GRM or EDM.  
The inverse of the augmented relationship 
matrix (H) was calculated as follows: 
 
 
  
with,  
 
 
 
where G is the GRM or EDM, A-1

22 is the 
submatrix of the pedigree relationship matrix 
pertaining to genotyped animals and λ is the 
scale parameter.  
 

The across-breed GRM was calculated by 
adapting the method of vanRaden (2008) to 
multiple breeds. Essentially, this required the 
SNP marker matrix to be adjusted so that the 

SNP markers had a mean of zero within breed 
and within- and across-breed variances 
equivalent to those of the pedigree relationship 
matrix. The GRM was corrected for 
differences between genotyped and non-
genotyped base populations by extending the 
method of Vitezica et al. (2011) to multiple 
breeds.  The EDM was calculated using the 
method of Gianola and van Kaam (2008). A 
bandwidth of 4/3 was used for all traits and 
scale parameters. The ranges of the scale 
parameters for the GRM and EDM were 
chosen based on Harris et al. (2011).  Scale 
parameters of 0.3, 0.5 and 0.7 were used for 
the GRM and 0.5, 0.7 and 0.9 for the EDM.  
 

The effect of incorporating genomic 
information in the MME was assessed by 
comparing traditional BVs to the GBVs. The 
traditional analyses included all herd test data 
up and including season 2011.  The genomic 
analysis included all herd test data up and 
including season 2009.  In these analyses, sires 
born in 2006 and 2007 (N=525; N=251 HF, 
N=104 HFxJ, N=170 J), whose first-crop 
daughters completed their first lactations in 
seasons 2010 and 2011, respectively, were the 
test population.  Genotyped sire born prior to 
2006 will be referred to as the training sires.  
The accuracy of prediction was calculated as 
the correlation between the traditional BVs 
(obtained using all data) and GBVs of  test 
animals. The inflation was assessed  using the 
regression slope of traditional BVs on GBVs, a 
slope of unity indicating no inflation. 
 
 
Computational Strategy  
 
The MME were solved using a preconditioned 
conjugate gradient (PCG) solver (Strandén and 
Lidauer, 1999) and iteration on data with code 
reordering (Tsurata et al., 2001).  The prior 
solutions for the single-step method were the 
solutions from the traditional genetic 
evaluation. The matrix B was precalculated for 
genotyped animals prior to solving the mixed 
model equations.  Matrix inversion and 
multiplication were done using the Intel MKL 
libraries. The PCG solver for the single-step 
model used the same procedure as the 
traditional model with the addition of a new 
routine that updated the PCG multiplication 
step,  the product of projection vector and the 
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MME, for the product of B and projection 
vector. The new routine used direct 
multiplication of B and the projection vector 
elements pertaining to the genotyped animals. 
This multiplication was repeated for each trait.  
 
 
Results and Discussion 
 
The single-step models all converged within 
500 iterations after the inclusion of the 
genomic information. The time increase, per 
iteration, from adding the genomic information 
to the model was approximately 5 seconds 
resulting in a total iteration taking 2 minutes 
and 36 seconds. 
 

Tables 1, 2 and 3 show the inflation  and 
accuracy of the GBVs of the test sires for milk, 
fat and protein, respectively.  The GBVs of the 
HF and J sires were inflated (i.e. regression 
coefficient less than 1.0) regardless of the 
whether the relationship matrix was augmented 
with the GRM or EDM.  The inflation 
increased (regression coefficient decreased) 
with increasing scale parameter.  The same 
trend was found for the FJX sires, but in the 
cases where the coefficients were greater than 
1.0, an increased scale parameter was 
associated with decreased deflation of the 
GBVs.  The biggest difference between the 
GRM and EDM was found for the fat GBVs, 
where the EDM resulted in lower inflation.  
The EDM tended to result in lower inflation 
for the milk and protein, but the effect was 
smaller and less consistent than it was with fat.  
A single value of the scaling parameter across 
breeds is a compromise – if the weighted, 
across-breed mean of the inflation factor was 

close to unity, one or more breed(s) would 
have inflated GBVs and the remaining one(s) 
would have deflated BVs.  Augmenting the 
relationship matrix with the GRM versus the 
EDM and changing the magnitude of the scale 
parameters had little impact on the accuracy of 
the evaluation.  
 

The within-breed correlations among the 
GBVs of the training sires, calculated using the 
different relationship matrices (GRM and 
EDM) and scaling factors, were greater than 
0.997 for all traits.  The correlations among the 
GBVs of the test sires ranged between 0.90 
and 0.99. The lowest correlations were 
observed between the two most extreme 
scenarios, GRM + =0.3 and EDM +  =0.9. 
 

The GBV means and standard deviations 
for the different augmented relationship 
matrices and scaling factors were nearly 
identical for training sires across all traits. In 
contrast, the means for the test sires were 
regressed more towards the breed means and 
the standard deviation of the GBVs increased 
as the scaling factor increased for all traits and 
both augmented relationship matrices.  
 

The single-step procedure outlined in this 
paper was computationally feasible for a 
complex genetic evaluation model with a large 
amount of data. Augmentation of the 
relationship matrix with an EDM tended to 
result in lower levels of inflation of the GBVs 
than did the GRM. The choice of the optimal 
scale parameters will be more challenging in 
across-breed genomic evaluations compared to 
single-breed evaluations.  
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Table 1. The inflation and accuracy1 of the GBVs for milk of the test sires.  
Across-breed Genomic Relationship Matrix 

 
Value for  

Inflation Accuracy 
HF J HFxJ HF J HFxJ 

0.7 0.80 0.81 1.04 0.68 0.69 0.87 
0.5 0.84 0.87 1.08 0.69 0.70 0.88 
0.3 0.87 0.92 1.14 0.68 0.70 0.88 
Euclidean distance matrix in a Gaussian Kernel 
 
Value for  

Inflation Accuracy 
HF J HFxJ HF J HFxJ 

0.9 0.84 0.81 1.04 0.65 0.66 0.85 
0.7 0.91 0.90 1.09 0.67 0.68 0.87 
0.5 0.93 0.95 1.14 0.68 0.70 0.88 
1Correlation, HF = Holstein Friesian, J = Jersey and X = Holstein Friesian x Jersey Crossbred Sires 
 
Table 2. The inflation and accuracy1 of the GBVs for fat of the test sires. 
Across-breed Genomic Relationship Matrix 

 
Value for  

Inflation Accuracy 
HF J HFxJ HF J HFxJ 

0.7 0.83 0.87 0.89 0.70 0.75 0.71 
0.5 0.88 0.94 0.95 0.71 0.76 0.71 
0.3 0.92 0.98 0.97 0.70 0.75 0.69 
Euclidean distance matrix in a Gaussian Kernel 
 
Value for  

Inflation Accuracy 
HF J HFxJ HF J HFxJ 

0.9 0.91 0.92 0.98 0.69 0.74 0.71 
0.7 0.94 0.97 1.02 0.70 0.75 0.71 
0.5 1.00 1.00 1.06 0.70 0.75 0.71 
1Correlation, HF = Holstein Friesian, J = Jersey and X = Holstein Friesian x Jersey Crossbred Sires 
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Table 3. The inflation and accuracy1 of the GBVs for protein of the test sires. 
Across-breed Genomic Relationship Matrix 

 
Value for  

Inflation Accuracy 
HF J HFxJ HF J HFxJ 

0.7 0.72 0.73 1.04 0.58 0.65 0.83 
0.5 0.80 0.78 1.11 0.60 0.65 0.84 
0.3 0.86 0.83 1.18 0.60 0.64 0.85 
Euclidean distance matrix in a Gaussian Kernel 
 
Value for  

Inflation Accuracy 
HF J HFxJ HF J HFxJ 

0.9 0.73 0.70 1.06 0.54 0.63 0.83 
0.7 0.83 0.77 1.13 0.57 0.64 0.85 
0.5 0.90 0.83 1.17 0.59 0.64 0.86 
1Correlation, HF = Holstein Friesian, J = Jersey and X = Holstein Friesian x Jersey Crossbred Sires 
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