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Abstract 
 
Regular mixed model methodology requires inversion of the variance-covariance matrix of the random 
effects. In the regular animal model the inverse of the numerator relationship matrix (A) can be easily 
set up directly due to its sparse nature with many simple coefficients. In G-Blup a genomic 
relationship matrix (G) is used, which is a dense matrix wherein the coefficients are determined by 
many loci. Inversion of the G matrix is a time-consuming or even a limiting factor with increasing 
training populations. Assuming a genomic model including SNP effects and a residual polygenic 
component, a derivation of G-Blup without inverting the G matrix is presented here. DGVs can be 
computed from the residual polygenic components given the relationship matrices G and A and the 
variance components. 
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Introduction 
 
The invention of a method to directly obtain 
the inverse of the numerator relationship 
matrix (A) by Henderson (1975) has been a 
breakthrough in the practical applicability of 
the animal model. Such a rapid derivation of 
the inverse is possible because (1) most of the 
entries in the inverse are zero and (2) few 
different values occur. 
 

The advent of genomic selection leads to a 
new situation whereby the traditional 
numerator relationship matrix can be replaced 
by a more accurate genomic relationship 
matrix (G). The genomic relationship matrix 
contains actual relationship coefficients instead 
of expected values. Therefore the numerator 
relationship matrix can be considered as a 
simple approximation of the genomic 
relationship matrix. This matrix however is 
dense and since many loci contribute to the 
coefficients, there are many different values. 

 
Regular mixed model methodology requires 

matrix inversion for the variance-covariance 
matrix of the random effects. However matrix 
inversion is computationally very costly for 
matrices with a dimension in the thousands and 
scales cubically with the matrix size. 

 
 
 
 

The genomic relationship matrix contains a 
row/column for each unique individual used in 
the training population. When G-Blup is 
applied to estimate direct genomic values the 
inversion of the G matrix is a time-consuming 
or even limiting factor with increasing training 
populations. An easy method to obtain the 
inverse in a rapid manner is not likely to be 
found due to the dense nature and the large 
number of loci determining the matrix 
elements. An alternative approach might be to 
avoid the need for an inverted G matrix and 
solve G-Blup in another way. 

 
An interesting paper has been presented by 

Jafarikia et al. (2006) where QTL solutions are 
obtained without inverting an IBD matrix. 
Their approach has been adapted here in the 
context of G-Blup. Instead of an IBD matrix, a 
genomic relationship matrix is used, whereas 
instead of individual QTL solutions, the 
interest is in direct genomic values. 
 
 
Methods 
 
Consider an additive model in which the sum 
of a direct genomic value (dgv) containing 
many SNPs and a residual polygenic 
component (a) is an estimate of the total 
genetic value (y) with an error effect (e): 
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edgvay ++=  
 

Mixed model equations for this model: 
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where A and G contain the same animals in the 
same order and 1Z  and 2Z  are incidence 
matrices. Two variance ratios for the random 
effects are 22

ae σσ=Aλ  and 
22
dgve σσ=Gλ . 

 
This can be rewritten as: 
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Because 1Z  equals 2Z , they both can be 

replaced with Z : 
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The RHS of both equations is the same so 

the LHS must be the same as well: 
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Rewriting: 
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Simplifying by removing redundant terms: 
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Multiply both sides with G : 
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Simplifying: 
 

 ( ) vgda ˆˆ G
1

A λGAλ =−  

Solve for dgv: 
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with 22
ae σσ=Aλ  and 22

dgve σσ=Gλ , 
which gives: 
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Therefore DGVs can be computed from the 

residual polygenic components given the 
relationship matrices and the variance 
components. Usually estimates of the total 
additive genetic variance are available and the 
division of this variance between the SNP 
component and the residual polygenic 
component is empirically determined. 

 
An iterative method, which can be used to 

solve these equations: 
 
1. Set 0ˆ =a , 0ˆ =vgd  and set some 

values for the variance components 
2. Compute ( )vgd ˆ~ Z'yy −=  
3. Solve these MME to obtain â : 
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5. Go to step 2 until solutions converge 
 
This approach is an iterative approach in 

which another iteration, step 3, is nested. This 
inner iteration could be solved with a standard 
pre-conditioned conjugate gradient solver. The 
coefficient matrix in step 3 needs to be setup 

only once. Also the 1GA −
2

2

a

dgv

σ
σ

 matrix in step  

4 needs to be computed just once. The outer 
iteration then requires only the computation of  
the y~  and vgd ˆ  vectors, which is a matrix 
times vector multiplication for both, and the 
calculation of a convergence criterion. 
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Discussion 
 
The proposed approach requires the presence 
of a residual polygenic component in the 
genetic model applied. Furthermore, if the 
fraction of variance assigned to the residual 
polygenic component is small then 
convergence might become more difficult. 

Possibly increasing the 2

2

a

dgv

σ
σ

 ratio in a few 

steps towards the desired level might improve 
convergence. 
 

Another approach to avoid inversion of the 
G matrix has been presented by VanRaden 
(2012) who in turn referred to Legarra et al. 
(2011). Their algorithm appends extra 
equations that include the genomic relationship 
matrix instead of its inverse and the pedigree 
relationship matrix for genotyped animals 
instead of its inverse to the mixed model 
equations. The iterative strategy proposed here 
as well as the one of Legarra et al. (2011) have 
not yet been applied to real data sets. 

 
A disadvantage of an approach whereby a 

large matrix inverse is avoided is that the 
inverse is often also useful for computing 
reliabilities. However in practice for larger 
populations approximate methods are 
developed and deployed. 

 
Furthermore the use of a SNP-Blup model 

(i.e. solving SNP effects and then summing 
these) instead of a G-Blup model can achieve a 
similar effect. These two models are equivalent 
if SNP effects are assumed to be normally 
distributed (Goddard, 2009). So the G-Blup 
approach can also be avoided by adopting a 
SNP-Blup model. However the equivalence of 
G-Blup and SNP-Blup assumes a model 
without residual polygenic effect. Here I use 
w  for the fraction of additive genetic variance 
assigned to the residual polygenic component. 
In case of a model with SNPs and a residual 
polygenic component in the G-Blup approach 
a weighted relationship matrix   

( )( ) 1GA −−+ ww 1  is inverted, whereas with 
the SNP-Blup approach the inverse of each 
matrix is weighted so it is similar to 

( ) 11 GA −− −+ ww 1  with of course each 
component multiplied with the respective 
random vectors and incidence matrices for 

animals and SNPs. Note however that the 
inverse of the weighted matrix does not equal 
the weighted inverses of the two component 
matrices, i.e. ( )( ) 1GA −−+ ww 1  ≠  

( ) 11 GA −− −+ ww 1 . It matters whether the 
weighting is done on the relationship matrices 
or on the inverse of these matrices. So in case a 
residual polygenic component is present in the 
model then the equivalence of G-Blup and 
SNP-Blup no longer holds.  
 
 
Conclusions 
 
In a model including SNP effects and a 
residual polygenic effect, G-Blup can be 
solved without inversion of the G matrix. 
Hence the inversion of a complicated dense 
matrix can be avoided. Solutions can be 
obtained by an iterative procedure where an 
inner iteration is nested within an outer 
iteration. In case no residual polygenic effect is 
included then SNP-Blup can be used, while 
maintaining equivalence with G-Blup. 
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