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Abstract 
 
Different genomic relationship (G) estimators were compared within and across populations in an 
admixed population. By assessing relationship coefficients separately for different populations, this 
study found that scaling G with current data allele frequencies across breeds increased coefficients for 
individuals in distant related populations, when compared to using breed allele means calculated from 
breed proportions. The latter however shifted most relationships towards zero or less. The predictions 
of direct estimated genomic values (DGV) were unaffected regardless of allele frequencies used. 
Relationship coefficients that combine genomic information and polygenic variation from the pedigree 
slightly increased the validation reliability of DGV in the current population. 
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Introduction 
 
The accurate estimation of relationships plays 
a crucial role in any genetic estimation of 
breeding values (EBV). Traditional 
relationships calculated from the pedigree are 
based on expected average identity by descent  
sharing between individuals (Malécot, 1948) 
and have been applied successfully within the 
framework of mixed model equations (MME) 
for BLUP estimation of EBV. Conversely, 
with the increasing availability of dense 
genetic markers, both pedigree-based 
relationships (A) and realized relationships 
calculated from marker data (G) are available 
for many important animals (Hayes et al., 
2009). Marker-derived relationships have more 
variation between closely related animals 
because they can show realized differences in 
genotypes between animals. Methods to 
compute G have been proposed for genotyped 
animals only (VanRaden, 2008) and when non-
genotyped animals are included in the same 
evaluation (Legarra et al., 2009; Christensen & 
Lund, 2010). 
 

For accurate estimation of genetic variation, 
relationships are defined relative to a base 
population where individuals are unrelated. 

The challenge in calculating G remains the 
unavailability of base population allele 
frequencies. So, in practice, currently 
genotyped population allele frequencies are 
used to make G, thus genotyped animals define 
the base population. The use of current 
population allele frequencies within a breed 
may not have major practical implications in 
genomic-BLUP. In the context of structured 
populations, the effect of using across-breed 
allele frequencies to scale G may lead to bias 
in the estimation of relationships. Thus, due to 
breeds within a multi-breed population, the 
current population scaling would set the 
average relationship across breeds to zero. 
However, the average relationship within 
breeds may be non-zero. An alternative would 
be to use the average of breed-specific 
frequencies (VanRaden et al., 2011). But this 
would not be possible in populations that 
constitute mainly crossbred animals. The 
Nordic Red dairy cattle (RDC) comprises of 
three sub-populations. Majority of animals 
(98%) in the Nordic RDC are composite of 
breeds. Estimation of breed-specific allele 
frequencies remains a major challenge. In this 
study, we assess alternative methods for 
calculating G and compare predictions 
resulting from using different G matrices. 
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Materials and Methods 
 
The data used were 38194 genotypes of single 
nucleotide polymorphism (SNP) markers for 
4106 bulls. The entire RDC pedigree (>4 
million animals) was used to calculate breed 
proportions (BP) for the bulls (Lidauer et al., 
2006). A more detailed description about the 
final 4 breeds is provided by Makgahlela et al. 
(2011). Breeds used in this study were the 
Swedish red (SRB), Finnish Ayrshire (FAY), 
Norwegian red (NRF) and the remaining 
breeds with BP less than 10% were combined 
into breed “OTHER”. The pruned pedigree for 
genotyped bulls contained 22300 animals.  
 

Pedigree relationships (A) of genotyped 
bulls were estimated using the pruned 
pedigree. Genomic relationships (G) were 
computed following approaches demonstrated 
by VanRaden (2008) and modifications of 
these methods to adapt to the admixed 
structure of the current population. Following 
VanRaden (2008) method one and using 
observed allele frequencies, the genomic 
relationship matrix G (named GOF) was 
computed as 𝐆𝐎𝐅 = 𝐙𝐙′/k. Element of animal 
i for marker j in Z is 0-2pj, 1-2pj or 2-2pj if an 
individual carries 0, 1, or 2 copies for the 
second allele, respectively. The pj is the 
frequency of the second allele at SNP marker j 
and k = 2∑ pj(1 − pj)j . The use of across 
breeds’ observed allele frequencies defines the 
base population to be genotyped animals with 
estimates of relationships approximately zero 
on average. Diagonals of GOF were multiplied 
by a factor 1.01 to make GOF positive-
definite.  
 

Two genomic matrices computed using 
breed allele means, named GBM and GBM2, 
were obtained by modifying methods one and 
two, respectively by VanRaden (2008). Matrix 
GBM was calculated as 𝐆𝐁𝐌 = 𝐌𝐌′/k 
where, with same notation as in Z, 
elements of M are 0-2pij, 1-2pij or 2-2pij. 
However, now pij is expected allele frequency 
of the jth marker for individual i with known 
base breed proportions. For each breed, the 
allele frequencies were computed by a simple 
multiple regression of genotypes on breed 
proportions. For the GBM2 matrix, the 
columns of M were scaled by the standard 
deviation of the expected marker effects, now 

the elements of M* 
were   −2𝐩𝐢𝐣

�2𝐩𝐢𝐣(𝟏−𝐩𝐢𝐣)
,  1−2𝐩𝐢𝐣

  �2𝐩𝐢𝐣(𝟏−𝐩𝐢𝐣)
 and  2−2𝐩𝐢𝐣

�2𝐩𝐢𝐣(𝟏−𝐩𝐢𝐣)
. 

In order to improve the stability, the expected 
allele frequencies less than 0.1 or greater that 
0.9 were set to these values. Then finally, 
relationships were obtained as 𝐆𝐁𝐌𝟐 =
𝐌∗𝐌∗′ m⁄ , where m is the number of markers.  
 

Alternative matrices GAOF and GABM2 
were computed by combining GOF and 
GBM2 with pedigree-based matrix A, using 
20% weight on A. To make GOF to the same 
scale as A, GOF was scaled to have the same 
average of diagonal elements, i.e.  𝐆𝐎𝐅∗ =
𝐆𝐎𝐅 ∑ 𝐀iii

∑ 𝐆𝐎𝐅iii
. To express A and GBM2 relative 

to the same unique ancestral population, 
GBM2 was scaled following Wright’s F-
statistics (Fst) as illustrated in detail by 
Meuwissen et al. (2011).  
 

Phenotypes were individual daughter 
deviations (IDD) for milk, protein and fat, 
obtained from March 2010 official Nordic 
RDC genetic evaluations (NAV). The IDD are 
actual cow performances adjusted for fixed 
effects, non-genetic random effects and genetic 
effects of the cow’s dam (Mrode & Swanson, 
2004), and were computed via animal model 
deregression from the 305d combined EBVs 
(Mäntysaari et al., 2011). For the validation of 
methods, the data were split into sets of 3300 
and 806 bulls for training and validation, 
respectively. The training data had older bulls 
that were evaluated for the first time during 
2005 NAV routine evaluation. 
 
 
Statistical Analyses 
 
Variance components estimation and DGV 
predictions were analyzed separately for each 
matrix using ASReml 3.0 (Gilmour et al., 
2009) and MiX99 (Lidauer & Strandén, 1999), 
respectively under the following GBLUP 
model: 
   
𝐲 = 𝐗𝐛 + 𝐙𝐚 + 𝐞, 

where y is a vector of IDD for daughters of 
bulls in the reference data set, X and Z are 
design matrices allocating records to b and a, 
respectively, b is a vector of fixed general 
mean and breed regression effects, a is vector 
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of breeding values for all genotyped bulls and 
e is a vector of residuals. We assumed that 
e~𝑁(O,𝐑σe2) where R is a diagonal of  1

EDC
. It 

is assumed that 𝐚~𝑁(O,𝐆σa2) , where G is the 
genomic matrix and σa2 is the additive genetic 
variance. Models that used GMB2 and GABM 
included fixed breed regressions. Predicted 
values for all animals in this case were 
obtained as the sum of the animals’ DGV and 
fixed breed regression solutions. 
 
 
Results 
 
Statistics of the diagonal elements of the 
pedigree (Aii)-1 and genomic data (Gii)-1 from 
different genomic estimators are presented in 
Table 1. The average Aii was greater in the 
Finnish bulls (0.016) and smaller in the Danish 
bulls (0.007). However, these averages were 
vice versa for Gii using observed allele 
frequencies from GOF. The mean of diagonals 
from A and GOF were close to zero across 
breeds, SWE and FIN but was 0.136 for DNK 
from GOF. The averages of diagonal elements 
were zero or less in all populations for A, 
GBM, and GBM2. In all cases, the tendencies 
observed for diagonal elements were also clear 
for pair-wise relationships (results not shown). 
Pedigree relationships had higher correlations 
with GOF across breeds (0.70) and in the 
Finnish bulls (0.82). GBM had higher 
correlation with A in the Danish population 
(0.86), and both estimators had a correlation of 
0.78 in the Swedish population. 
 

Figure 1 illustrates distributions for 
diagonal elements from different relationship 
estimators. There were 155 and 145 animals 
with GOFii greater than 0.6 in the combined 
and DNK population, respectively. Diagonals 
of GBM2 were mainly in the category less 
than one for all animals in all populations. 
Thus, with GBM2, individuals appeared to be 
less homozygous.  

 
 
 
 
 
 
 

 

Table 1. Statistics of diagonal elements from 
A and different G matrices within and across 
populations. Values given are deviations from 
1.00. 
 
 

Mean Minimum Maximum 

Across populations 
A 0.012 0.000 0.135 
GOF 0.019 -0.129 0.379 
GBM -0.051 -0.254 0.310 
GBM2 -0.242 -0.387 0.093 
Danish population 
A 0.007 0.000 0.109 
GOF 0.136 -0.027 0.328 
GBM -0.040 -0.173 0.310 
GBM2 -0.233 -0.339 0.093 
Swedish population 
A 0.008 0.000 0.081 
GOF 0.006 -0.129 0.184 
GBM -0.043 -0.226 0.234 
GBM2 -0.238 -0.387 0.029 
Finnish population 
A 0.016 0.000 0.135 
GOF -0.021 -0.123 0.157 
GBM -0.062 -0.217 0.283 
GBM2 -0.250 -0.377 0.077 
 

Table 2 shows the correlations between 
EBV and DGV from different estimators in the 
validation data set. The estimation of breeding 
values from GOF, GBM and GBM2 
converged to similar solutions with 
correlations equal to 1.0. This includes DGVs 
from matrices that combined A and G 
information. Thus, DGV for animals were 
similar regardless of allele frequencies used to 
build G. The correlations between EBV and 
DGV were 66% from matrices with genomic 
information only and increased to more than 
70% when weighted genomic information was 
combined with polygenic variation GAOF and 
GABM2. The validation reliabilities of DGV 
for all traits (not shown) were also similar 
between G matrices, however there was a 
slight increase in reliabilities when genomic 
information and pedigree data were combined. 
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Table 2. The correlations between EBV and 
DGV for milk in the validation bulls. 

 GOF GBM GBM2 GAOF GAB
M2 

A 0.67 0.67 0.66 0.76 0.76 
GOF  1.00 1.00 0.98 0.98 
GBM   1.00 0.98 0.98 
GBM2    0.98 0.98 
GAOF     1.00 
GBM2      
 

Discussion 

The comparison of three genomic relationship 
estimators in a structured population using 
different allele frequencies showed that when 
populations are combined, simple observed 
allele frequencies across breeds tend to 
overestimate relationships among individuals 
from populations that are distantly related to 
the mean allele frequency. The mean allele 
frequency across breeds was strongly 
influenced by the Swedish and Finnish 
population since these breeds have more 
animals in the founder population and are more 
related genetically (Brøndum et al., 2011; 
Makgahlela et al., 2011). As a result, and, in 
contrast to pedigree relationships, the Danish 
population appeared to be the most inbred and 
related. This is unexpected because this 
population has been found to be more admixed 
than the other two, due to years of 
crossbreeding (Brøndum et al., 2011; 
Makgahlela et al., 2011). Thus, relationships 
from GOF have been increased between 
Danish bulls and were decreased for other 

populations. The use of estimated breed allele 
means from breed proportions averaged 
relationships similarly in all populations, 
although relationship coefficients were shifted 
more towards zero or less. 
 

The predictions of DGV were unaffected 
regardless of which allele frequencies were 
used to calculate relationships. This has been 
observed previously (VanRaden, 2008; Forni 
et al., 2011). The prediction of DGV has been 
found to be insensitive provided a common 
fixed general mean is included in the model 
(Strandén & Christensen, 2011). In this case, 
inclusion of fixed breed regressions for GBM2 
and GABM2 has transmitted breed means 
back into the prediction of DGV.  
 

In many implementations of genomic 
evaluations, the inclusion of polygenic effect 
has been found to be beneficial (Sullivan & 
VanRaden, 2009; Van Doormaal et al., 2009). 
It can improve the accuracy of DGV, and 
reduce the bias in DGVs.  In the current study, 
when the G and A relationship matrices were 
combined, it was expected that the proper scale 
of G would improve the predictions.  
However, we saw no difference in predictive 
value between DGV calculated using GAOF 
and GABM2. This could be because the 
evaluation data only included genotyped 
animals.  The GABM2 matrix could be more 
useful in single-step evaluations where most 
animals are evaluated by pedigree relationship 
matrix and through their relationships to 
genotyped animals.    
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