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Abstract 
 
Automated milking systems (AMS) are becoming more popular in dairy farms. In this paper we 
present an approach for estimation of residual error covariance matrices for AMS and conventional 
milking system (CMS) observations. The variances for other random effects are kept as defined in the 
evaluation model. AMS residual variances were found to be 16 to 37 percent smaller for milk and 
protein yield and 42 to 47 percent larger for fat yield compared to CMS. 
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Introduction 

  
Automated milking systems (AMS) are 
becoming more popular in dairy farms. 
However, in the current Nordic test-day model 
(TDM) the variance components are estimated 
from conventional milking system (CMS) 
observations and the same variance 
components are used for AMS herds. 
Measurement errors associated with test-day 
observations from herds with AMS are 
different due to the different measuring and 
sampling procedure. Under CMS the test-day 
observation for milk yield is the sum of 
morning and evening milking and under AMS 
it is the weekly sum divided by 7. Protein and 
fat content is measured from one milk sample 
in both milking systems. 
 

In the variance component analyses for the 
Nordic TDM, separate residual covariance 
matrices for milk, protein and fat were 
estimated for 12 intervals within each 
lactation. The estimated variance components 
were used to derive covariance functions (CF) 
across traits and lactations. The CFs were 
formed in a way that differences in the 12 
residual covariance matrices are explained by 
the CF for the non-genetic animal effect and 
by one residual covariance matrix for the 
measurement error part.  

 

In this paper we present an approach to 
estimate separate measurement error 
covariance matrices for AMS and CMS 
observations. 
 
 
Materials and Methods 
 
Datasets 
 
We sampled two Danish Holstein data sets of 
different size from data used in the Nordic 
TDM evaluation. A small data set (data 1) 
including 16 AMS and 24 CMS, and a large 
data set (data 2) including 40 AMS and 60 
CMS randomly selected herds. Herds were 
required to have on average at least nine 
primiparious cows every year. From the 
sampled herds all observations recorded 
between 2001 and 2010 were included in the 
analyses. A herd was defined as AMS herd if it 
has started to use automatic milking system 
before 2010. Therefore, the majority of the 
sampled AMS herds were actually CMS herds 
in the beginning of the sampling years. Thus, 
the desired ratio of AMS/CMS herds is 
achieved at the end of the sampling years. The 
data sets are described in the Table 1. 
  



INTERBULL BULLETIN NO. 46. Cork, Ireland, May 28 - 31, 2012 

 

104 

 

A) Approach for estimation of residual 
(co)variances for automatic and 
conventional milking systems 

 
Let’s, in a simplified way, describe the model 
components for the estimation of variance 
components to be 
 
𝑌 = 𝑋𝑏 + ℎ𝑡𝑑 + Φ𝑝 + Φ𝑎 +  𝑒𝑣𝑐𝑒       (1) 
 
and the model components for the Nordic  
 
TDM be 
 
𝑌 = 𝑋𝑏 + ℎ𝑡𝑑 + 𝑆𝑝π + 𝑆𝑎α +  𝑒𝑐𝑓 ,    (2) 
 
where X is an incidence matrix for fixed 
effects b, htd are random herd test-day effects, 
Φp and Φa are matrices associating non-genetic 
animal effects p and genetic animal effects a to 
an observation, respectively and evce is the 
random measurement error vector. Elements of 
Spπ and Saα are covariance functions CFp and 
CFa for non-genetic, and genetic animal 
effects, respectively, which were derived from 
variance components estimated by model (1), 
and where var(π) = P, var(α) = A⊗G, and 
var(ecf) = Ecf 
 

Assuming that the differences between 
residual variances for different milking 
systems over the lactation is constant, and that 
there is no milking system interaction between 
the other variance components in the model, 
then there is no need to re-estimate all variance 
components for all random effects in model 
(1), even earlier variance components 
estimation by model (1) was based on CMS 
observations only. See Mulder et al. (2004) for 
discussion about Genotype×Environment 
interaction. Hence, only the measurement error 
covariance matrices for AMS (EAMS) and CMS 
(ECMS) have to be re-estimated while keeping 
already available Sp, Sa, P and G as fixed.  
 

Updating the routine model with a 
(co)variance matrix for AMS observations can 
be achieve with minimum changes by keeping 
the original Ecf for CMS observations 
unchanged, but modifying the estimate Eams  
covariance matrix by preserving the estimated 
correlations between traits and scaling the 
variances and covariances to have same  ratios 

between updated CMS and AMS matrices as 
those obtained by the re-estimation. 
 
 
B) Evaluation of estimation approach 
 
The two data sets were used to evaluate the 
estimation approach. Variance components for 
the first lactation were estimated by applying 
model (1) where traits were milk, protein and 
fat yield. The fixed effects in b were age at 
calving, days carried calf and fixed lactation 
curve nested within 2-year calving period. The 
random effects were modeled as described in 
Lidauer et al. (2009) but with the differences 
that here residual covariance matrices were 
estimated for AMS observations as well. 
Residual covariance matrices were nested 
within 12 days in milk (DIM) intervals 
yielding 24 3×3 matrices to be estimated. 
Variance components were estimated 
separately for both data sets using a MC-EM 
REML algorithm (Matilainen et al., 2012). 
 

After the variance component estimation, 
covariance functions for both data sets and 
milking systems were fitted by a procedure 
described in Koivula et al. (2004). The CF for 
AMS were fitted using the AMS residual 
covariance matrices and for CMS the CMS 
residual covariance matrices were used. The 
CFs fitted for CMS observations were 
considered to be “true” underlying CF and 
were utilized to obtain Sp1, Sa1, Sp2 and Sa2 for 
data sets 1 and 2 respectively. Also the fitted 
measurement error covariance matrices EAMS1, 
ECMS1, EAMS2 and ECMS2 were obtained for both 
data sets during the covariance function fitting. 
From here onwards the measurement error 
covariance matrices EAMS1 and EAMS2 are 
named “true-fitted” measurement error 
covariance matrix for AMS observations of 
data set 1 and 2, respectively. 
  

Then the variance component estimation 
was carried out a second time by swapping S 
matrices between data sets, thus by using Sp2 
and Sa2 as random effects for data 1 and Sp1 
and Sa1 for data 2 and keeping corresponding 
variance parameters as fixed during the 
variance component estimation. Only the 
measurement error covariance matrices were 
re-estimated and are denoted by  ÊAMS1,  ÊCMS1,  
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ÊAMS2 and ÊCMS2. The element wise ratios of 
re-estimated covariance matrix components 
between milking systems were calculated and 
compared to the “true-fitted” element wise 
ratios of EAMS1 and ECMS1 (ER1) and EAMS2, 
ECMS2 (ER2) 
 
 
C)Variance component estimation 
 
The proposed approach in A) for the 
estimation of AMS and CMS measurement 
covariance matrices was applied on data 2 for 
all three lactations. All other variance 
components in the model were kept fixed and 
were the same as in the Nordic Holstein 
routine evaluation model, which were 
originally estimated from Swedish Holstein 
data. 
 
 
Results & Discussion 
 
Evaluation of estimation approach 
 
The “true-fitted” measurement error 
covariance matrices EAMS1, ECMS1, EAMS2 and 
ECMS2 and correlations are presented in Table 2 
and were obtained from fitting CFs to the 
originally estimated variance components, 
which included 12 residual covariance 
matrices for each type of observations. Rank of 
the fitted CFs was reduced to seven for both, 
non-genetic (SpPSp´) and additive genetic 
animal (SaGSa´) effect.  
 

Differences in estimates were found 
between data sets and milking systems. In the 
both data sets AMS had smaller measurement 
error variances for milk and protein and higher 
variance for fat compared to CMS. Also the 
correlations between traits were smaller in 
AMS than in CMS. All measurement error 
variance components and correlations for milk 
and protein were higher based on the analysis 
of the large data compared to the small data. 
However, for fat the estimates from both data 
sets were similar. 
 

The difference in measurement error 
variances affected daily heritability curves 
(Figure 1). The daily heritability was higher in 
AMS for milk and protein and lower for fat. 

The AMS heritability curve based on CMS Sp2, 
Sa2 and EAMS2 deviated slightly from the “true” 
curve at the beginning of lactation. This 
originated from non constant difference of 
residual variances between milking systems at 
the early stages of lactation. The difference 
was minor and the estimation approach can 
still be used. A similar pattern was found in 
protein and fat, although in protein there was 
virtually no difference. 
 

The ratios of re-estimated measurement 
error variance components were in good 
agreement with the original ones (Table 3) 
although the Sp and Sa from the other data 
were used. This shows that the measurement 
error variance ratio of AMS and CMS was not 
sensitive to Sp and Sa matrices used. and the 
presented approach can be used even if the 
elements of those matrices are based on 
covariance functions derived from different 
data set. 
 
 
Variance component estimation 
 
The AMS measurement error variance 
components were estimated to be 18 to 34 
percent smaller in all three lactations for milk 
and protein yield compared to CMS (Table 4). 
For fat the AMS measurement error variance 
was 40 to 51 percent higher than in CMS. The 
results for the first lactation were consistent 
with the original estimates (Table 3) although 
the applied routine evaluation model CF 
produces somewhat larger differences (smaller 
ratios) compared to those of the “true-fitted” 
estimates. 
 

The 305d heritabilities for AMS and CMS 
were practically the same in all three lactations 
and traits (Table 5) even there was a clear 
difference in the daily heritabilities (Figure 1).  
 
 
Conclusions 
 
We presented an approach to estimate 
measurement error variances for AMS when 
certain conditions hold. The approach was 
validated by using two different data sets. The 
results showed that the estimation approach 
was suitable. 
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The results also indicated that there is a 
considerable difference in measurement error 
variances between observations from AMS and 
CMS. As automated milking systems are 
becoming more popular there is need to  
account for these differences in genetic 
evaluation models. 
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Table 1. Descriptive statistics for observations from first lactation. 

 Data 1 Data 2 
 AMS CMS Total AMS CMS total 
N herds 16 24 40 40 60 100 
N animals 5183 15998 20620 12267 38084 49145 

N obs 38228 131717  91839 320596  
       
Mean 
 Milk kg 
 Protein kg 
 Fat kg 

 
27.0 
0.91 
1.09 

 
26.5 
0.89 
1.09 

  
28.2 
0.95 
1.12 

 
26.8 
0.89 
1.09 

 

 
Sd 

      

 Milk kg 
 Protein kg 
 Fat kg 

5.97 
0.18 
0.24 

5.97 
0.18 
0.24 

 6.24 
0.19 
0.25 

5.98 
0.18 
0.24 
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Table 2. Measurement error variances (diagonal) covariances (upper triangle) and correlations (lower 
triangle) for the “true-fitted” matrices EAMS1, ECMS1, EAMS2 and ECMS2 which were obtained from fitting 
covariance functions to the estimated variance components for first lactation milk (kg), protein (kg) 
and fat (kg). 

   Data I  Data II 
 EAMS1  ECMS1   EAMS2 ECMS2 

 Milk Protein Fat Milk Protein Fat  Milk Protein Fat Milk Protein Fat 
Milk 3.21 0.100 0.103 5.08 0.167 0.180  3.96 0.126 0.128 5.39 0.176 0.189 
Protein 0.78 0.005 0.005 0.91 0.007 0.007  0.84 0.006 0.005 0.92 0.068 0.007 
Fat 0.39 0.45 0.021 0.67 0.67 0.145  0.44 0.48 0.021 0.66 0.67 0.015 

 
 
Table 3. The element wise ratios of “true-fitted” measurement error covariance matrices EAMS1, ECMS1 
(ER1), EAMS2, ECMS2 (ER2) and re-estimated measurement error covariance matrices ÊAMS1, ÊCMS1 (ÊR1) 
and ÊAMS2, ÊCMS2 (ÊR2) for first lactation milk, protein and fat. 

   Data I  Data II 
 ER1  ÊR1   ER2 ÊR2 

 Milk Protein Fat Milk Protein Fat  Milk Protein Fat Milk Protein Fat 
Milk 0.63 0.60 0.57 0.62 0.59 0.52  0.73 0.72 0.68 0.72 0.69 0.64 
Protein  0.77 0.72  0.78 0.68   0.84 0.78  0.83 0.75 
Fat   1.47   1.45    1.42   1.41 

 
 
Table 4. Ratios of estimated AMS and CMS measurement error covariance parameters from data II 
for milk, protein and fat of all three lactations, when applying covariance functions of the routine 
evaluation model and keeping variance components of other random effects as fixed. 

 Lactation 1  Lactation 2  Lactation 3 
 Milk Prot Fat  Milk Prot Fat  Milk Prot Fat 

Milk 0.71 0.69 0.65  0.71 0.69 0.65  0.66 0.65 0.61 
Protein  0.82 0.76   0.81 0.76   0.77 0.69 

Fat   1.40    1.51    1.45 
 
 
Table 5. 305d heritabilities for AMS and CMS based on re-estimated measurement error  variance 
components and on covariance functions applied in the Nordic Holstein routine evaluation model. 
 
 
 
 
 
 
 

 Milk Protein Fat 
 ams cms ams cms ams cms 
Lact1 0.39 0.39 0.35 0.35 0.38 0.39 
Lact2 0.29 0.29 0.29 0.28 0.32 0.33 
Lact3 0.25 0.25 0.26 0.26 0.28 0.29 
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Figure 1. Daily heritability curves for first lactation milk for AMS (red), CMS (black) obtained from 
fitting covariance functions to original variance component estimates, and when AMS measurement 
error covariances were re-estimated by keeping CMS covariance functions (Sp and Sa and variance 
parameters) fixed for other random effects in the model (dashed blue). 
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