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Abstract 

Dominance is the phenomenon of intra-locus interaction of alleles. Dominance variance in dairy cattle 
estimated from pedigree data shows a large variation and amounts to up to 50% of the genetic variance 
in conformation traits and 43% in milk production traits. With SNP genotypes of cows, dominance 
variance can be estimated both on the marker level and on the animal level using genomic dominance 
relationship matrices. Variance components of nine milk production and conformation traits were 
estimated in additive and dominance models by REML estimation and Gibbs sampling. Estimated 
dominance variance amounted to between 3.3% and 50.5% of the total genetic variance. REML and 
Gibbs sampling estimates showed good concordance. Although standard errors of dominance variance 
were rather large, dominance variance in milk, fat, protein yield, somatic cell score and milkability 
was significant.  
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Introduction 
 
Dominance arises when the allele effect at a 
locus is not just additive, but alleles are 
interacting so that the value of heterozygote 
genotypes deviates from the mean of the 
homozygote values. Estimates of dominance 
variance in dairy cattle range from 7.3% to 
49.8% of the total genetic variance in 
conformation traits (Misztal et al., 1997; 
Tempelman and Burnside, 1990a) and from 
3.4% to 42.9% in milk production traits 
(Miglior et al., 1995; Tempelman and 
Burnside, 1990b; Van Tassell et al., 2000).  

 
At an individual level, dominance is not 

used in animal breeding (Misztal et al., 1998), 
in spite of including a relevant part of genetic 
variation. The reason is the computational 
demand of large scale genetic evaluations for 
dominance, the relatively low accuracy, and 
the complexity of planning and computing the 
outcome of planned matings (Varona and 
Misztal, 1999). 
 

With the availability of SNP genotypes of 
animals with own phenotypic records, 
dominance at the marker allele can be readily 
determined. Further, genomic dominance 

covariance matrices can be calculated similarly 
to genomic additive relationship matrices, 
which are widely used in genomic selection, 
such that dominance effects can be estimated 
in a GBLUP model (Su et al., 2012; Vitezica et 
al., submitted).  

 
In this work, we estimated variance 

components including dominance variance in a 
dataset of genotyped Bavarian Fleckvieh cows.  
 
 
Material and Methods 
 
Cows were genotyped with Illumina 
BovineHD Genotyping BeadChip at 777,962 
loci. SNPs with call rate <0.9, a minor allele 
frequency <0.005 and highly significant 
deviation (p<10-5) from the Hardy Weinberg 
equilibrium and SNPs that were not annotated 
(UMD3) on the autosomes or the pseudo-
autosomal region of the X-chromosome were 
excluded from the analysis. 629,028 loci 
remained in the dataset after editing. High-
density genotypes and yield deviations (YD) in 
nine traits (milk yield, fat yield, protein yield, 
somatic cell score, milkability, stature, udder 
score, udder depth and feet and legs score) 
from 1996 Bavarian Fleckvieh cows were 
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available to estimate variance components 
including dominance variance in a GBLUP 
framework. The effective number of own 
performances (EOP; Edel et al., 2008) was 
provided as weight for the YD. 
 

Additive-genetic (𝜎𝐴2) and residual (𝜎𝐸2) 
variance components were estimated with 
models MA and MG. 

 
MA: y = µ + Zu + e; V(u) = A𝜎𝐴2; V(e) = F𝜎𝐸2 
 
MG: y = µ + Zu + e; V(u) = G𝜎𝐴2; V(e) = F𝜎𝐸2 
 
y is a vector of YD, µ is the overall mean, Z is 
a design matrix relating YD to breeding values, 
u is a vector of breeding values of cows and e 
is a vector of residuals. Covariance matrices of 
additive effects are V(u) = A𝜎𝐴2 in model MA 
and V(u) = G𝜎𝐴2 in model MG, where A is the 
numerator relationship matrix and G is the 
genomic relationship matrix. The genomic 
relationship matrix G* was calculated 
following the approach of VanRaden (2008) 
using PREGSF90 (Aguilar et al., 2011). G* 
was scaled so that the means of diagonals and 
off-diagonals are the same as in A (Vitezica et 
al., 2011; Christensen, 2012) and finally 
combined with A to G = 0.95 G* + 0.05 A in 
order to improve numerical stability. The 
variance matrix of residual effects is V(e) = 
F𝜎𝐸2 in both models, where F is a diagonal 
matrix with reciprocals of EOP as weights. 
Extending MG for a dominance effect leads to 
model MGD. 
 
MGD: y = µ + Zu + Zd +e; V(u) = G𝜎𝐴2; 
V(d) = D𝜎𝐷2; V(e) = F𝜎𝐸2 
 
d is a vector of individual dominance 
deviations. The covariance matrix of 
dominance effects is V(d) = D𝜎𝐷2 where D is 
the genomic dominance relationship matrix 
and 𝜎𝐷2 is the dominance variance. D* was 
calculated as: 

𝐃∗ =
𝐖𝐖′

4∑ 𝑝𝑘2(1 − 𝑝𝑘)2𝑚
𝑘=1

 

 
where W has a dimension of the number of 
individuals (n) by the number of loci (m) and 
takes the values -2(1-pk)² and -2pk² for 
homozygous and 2pk(1-pk) for heterozygous 
genotypes. pk is the allele frequency at locus k. 
D* was finally combined with the identity 

matrix I as D = 0.95 D* + 0.05 I to improve 
numerical stability.  
 

Estimation of variance components was 
performed with REMLF90 (Misztal et al., 
2002). The superiority of model MGD over 
model MG was tested by means of a likelihood 
ratio test. The test statistics was calculated as 
χ² = -2ln(likelihood for MG) + 2ln(likelihood 
for MGD). The likelihood ratio follows a 
mixture of the χ²-distributions with 0 and 1 
degrees of freedom (Visscher, 2006). Variance 
components of model MGD were additionally 
estimated by Gibbs Sampling using 
GIBBS1F90 software in order to get standard 
errors of the estimates. Additive and 
dominance variance components on the marker 
level (𝜎𝑎2 and 𝜎𝑑2) were estimated with GS3 
software (Legarra et al., 2010) in a Markov 
Chain Monte Carlo algorithm, using a model 
on the marker level:  

 
𝐲 = 𝟏𝜇 + 𝐓𝐚 + 𝐗𝛅 + 𝐞 

 
where a and 𝛅 are additive and dominant 
effects of the SNPs, and T and X are incidence 
matrices coded as {-1, 0, 1} and {0, 1, 0} for 
the three possible genotypes. The assumed 
covariance structure is V(a) = I𝜎𝑎2 and V(𝛅) = 
I𝜎𝑑2. From the estimates, additive and 
dominance variance components on the animal 
level were calculated as 
 
𝜎𝐴2 = ∑ [2𝑝𝑘(1− 𝑝𝑘)]𝑚

𝑘=1 𝜎𝑎2 + ∑ {2𝑝𝑘(1 −𝑚
𝑘=1

𝑝𝑘)1−𝑝𝑘−𝑝𝑘²𝜎𝑑2  
and 𝜎𝐷2 = ∑ �4𝑝𝑘2(1− 𝑝𝑘)²�𝑚

𝑘=1 𝜎𝑑2.  
 
 
Results and Discussion 
 
Means of off-diagonals of G (before scaling) 
and D are 0.000 (This implies that the 
complete population is in Hardy-Weinberg 
equilibrium). The standard deviation of off-
diagonals of G is 0.036. This is 5 times as 
large as the standard deviation of off-diagonals 
of D which is 0.007. The proportion of off-
diagonals that are smaller than -0.05 or larger 
than 0.05 is 6.27% for G but only 0.02% for D. 
Therefore, matrix D is less informative than G. 
Estimated variance components for model 
MGD are shown in Table 1. Dominance 
variance (expressed as proportion of total 
genetic variance) ranged from 3.3% in stature 
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to 50.5% in somatic cell score. Dominance 
variance was larger in milk production traits 
than in conformation traits. The estimates of 
additive variance with the dominance model 
were not very different (between -5.5% in 
protein yield and 1.3% in stature) from the 
estimates with the genomic additive model. 
The only exception was milkability where the 
estimated additive variance was 43.5% smaller 
in the dominance model. 
 

Estimates of variance components in model 
MGD with Gibbs Sampling or at a SNP level 
with GS3 were very similar to REML 
estimates and the results are not shown here. 
Estimates of the ratio between dominance and 
phenotypic variance have standard errors 
around 0.10, which is fairly good in such a 
small dataset. 
 
 
 

Table 1. Estimated variance components (REMLF90) in model MGD. 

Trait 𝜎𝐴2
a 𝜎𝐷2

a 𝜎𝐸2
a 𝜎𝐷2

𝜎𝐴
2+𝜎𝐷2

a 

Milk yield 208900 ± 28797 92640 ± 45132 164700 ± 33330 0.308 ± 0.107 
Fat yield 267 ± 37 104 ± 53 198 ± 367 0.281 ± 0.104 
Protein yield 166 ± 26 115 ± 44 154 ± 29 0.409 ± 0.104 
Somatic cell score 0.256 ± 0.067 0.261 ± 0.120 0.555 ± 0.094 0.505 ± 0.152 
Milkability 0.0122 ± 0.0019 0.0076 ± 0.0017 0.0029 ± 0.0010 0.390 ± 0.081 
Stature 5.80 ± 0.87 0.20 ± 0.49 6.51 ± 0.80 0.033 ± 0.065 
Udder score 1.99 ± 0.52 0.27 ± 0.78 9.29 ± 0.92 0.118 ± 0.160 
Udder depth 0.380 ± 0.061 0.119 ± 0.095 0.517 ± 0.102 0.238 ± 0.120 
Feet and legs 1.19 ± 0.45 0.21 ± 0.67 9.89 ± 0.82 0.153 ± 0.192 

a Estimate ± standard error (estimated with Gibbs sampling in GIBBS1F90) 

 
The results agree with Misztal et al. (1998) 

who reported more dominance variation for 
production than for type traits. The estimates 
of additive and dominance variances, 
expressed as proportions of the total variance, 
of milk production traits in this study are larger 
than in Miglior et al. (1995), Van Tassell et al. 
(1999) and Van Tassell et al. (2000). One 
reason for this might be that a part of 
phenotypic variation in our dataset was 
removed in the process of calculation of YD. 
Tempelman and Burnside (1990b) estimated 
dominance variance in fat yield to 24% of the 
phenotypic variance, which is a bit larger than 
in our results. The ratio of dominance to 
additive variance in our dataset was between 
0.39 and 0.69 in milk production traits which is 
considerably larger than in Van Tassell et al. 
(2000). The difference might be explained by 
two reasons. First, Fleckvieh is genetically 
more diverse than Holstein as indicates the 
considerably larger effective population size of 
the Fleckvieh breed (Pausch et al., 2013). 
Second, all estimates of dominance variance 
available in the literature were obtained using 
covariance matrices based on pedigree data. 
The use of genomic information is expected to 

improve the estimation of dominance 
relationships which can explain the larger 
estimates of dominance variance obtained in 
this study. Estimates of dominance variance in 
conformation traits are quite small, except for 
udder depth. This is in analogy with Misztal et 
al. (1997) who reported dominance variance in 
10 conformation traits to amount to less than 
5% of phenotypic variance. 
 

In all traits, model MG, that exploited 
genomic information, fitted the data better than 
model MA, that included pedigree information 
only. The superiority of model MGD, 
containing the dominance effect, over MG was 
significant in the traits milk yield, fat yield, 
protein yield, somatic cell score and 
milkability as tested with the likelihood ratio 
test. 
 
 
Conclusions 
 
Genomic estimates of variation due to 
dominance in dairy cattle agree with pedigree-
based estimates and the computational 
complexity and modeling is straightforward. 
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The impact of modeling dominance on 
genomic predictions and the use of dominance 
effects in planned matings should be 
investigated. 
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