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Abstract 
 
In the last years, genomic selection has become an important component in dairy cattle breeding 
programs. Accordingly, different approaches are currently being developed, and used, to estimate 
genomic breeding values. The objective of this study was to compare the predictive ability of four 
methodologies to perform genomic evaluations in 25phenotypic traits (including productive, type and 
functional traits) using a large reference population of dairy cattle. The four evaluated approaches 
were Bayesian Reproducing Kernel Hilbert Spaces (RKHS), simple G-BLUP (GB), G-BLUP 
including a polygenic effect of 5% (GBP-5%) and G-BLUP including a polygenic effect of 10% 
(GBP-10%).The first two approaches use only genomic information, and the last two use both 
genomic and pedigree information. The data consisted on de-regressed proofs for 18,443genotyped 
bulls.A cross-validation was performed dividing the bulls into a training and a testingdata setborn 
before or after 2005, respectively. The results show that within the approaches using only genomic 
information, RKHS performs better than a simple GBLUP model. However, including polygenic 
effect improved GBLUP results. In general, RKHS performed slightly better, with larger predictive 
accuracy and lower mean square error, for the production traits, while GBP-5% performed better for 
type traits.Further research is needed to include pedigree information and to optimize the 
computational requirements of RKHS approach for routinely genomic evaluations. 
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1. Introduction 
 
Selection based on dense SNP (Single 
Nucleotide Polymorphism) markers across the 
genome has become an important component 
in dairy cattle breedingprograms (Hayes et al., 
2009). In several genomic selection 
programs,thousands of progeny tested bulls 
have been genotyped and are being used as 
nationalreference populations. This has been 
extended through sharing data across countries 
for larger reference populations,such as the 
North American cooperation, Eurogenomics, 
or the joint Brown Swiss project (Gao et al., 
2012). 
 

Different approaches are currently being 
used to estimatebreeding values based on 
genomic information. The first type of 
methodologies impliesprocedures that regress 
phenotypic records on SNP markers directly 
(Meuwissen et al., 2001; Park and Casella, 

2008). The second group of approaches 
encloses techniques that estimate genetic 
values using genomic relationship matrices, 
instead of marker estimation (de los Campos et 
al., 2009; Misztal et al., 2009). The last type of 
alternatives for dealing with large data sets and 
complex interactions between SNP are 
machine learning algorithms. Nonparametric 
or semi-parametric methods of this type can be 
implemented by regressions on markers (e. g., 
Boosting as in González-Recio et al., 2010) or 
by building appropriate (co)variance structures 
(e. g. Reproducing Kernel Hilbert Spaces 
regression as in Gianola et al., 2006). These 
nonparametric or semi-parametric approaches 
have been suggested as an alternative to 
predict genomic breeding values because these 
methods may require weaker assumptions 
when modeling complex quantitative traits. 
 

Official genomic evaluation in Spain started 
in 2012 (Jiménez-Montero et al., 2012a) by 
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implementation of a Random Boosting 
approach (González-Recio et al., 2010). 
However, this procedure has shown a trend to 
yield predictions of genomic values that 
underestimate the true values. Alternative 
semi-parametric methods such as Bayesian 
Reproducing Kernel Hilbert Spaces (RKHS) 
and current popular parametric methods such 
as G-BLUP are being considered. Inclusion of 
genealogical information could also enhance 
accuracy of current genomic evaluations. 
When comparing the alternative approaches, it 
will be important to evaluate the accuracy of 
those methodologies to identify the approach 
having the highest predictive ability and 
feasible computational implementation for 
routinely genomic selection. 
 

The aim of this study was to check the 
predictive ability of four different models for 
genomic evaluations in different economically 
important traits in a large reference population 
of dairy cattle. The accuracy of a RKHS 
regression method is compared with a simple 
G-BLUP. These two methodologies used only 
SNP information. In addition, the inclusion of 
genealogical information, together with 
genomic information, may improve genomic 
predictions because the SNP information may 
not account for all additive genetic variance. 
For this reason, also a G-BLUP model 
including a residual polygenic effect with two 
weights (5 and 10%) was also evaluated. 

 
 
2. Materials and Methods 
 
Genotypes 
 
Genomic information from 22,300 
Eurogenomics progeny-tested sires was used in 
this study. The Bovine 50K chip (Illumina inc., 
San Diego) was used to genotype 54,609 SNPs 
in each sire. SNPs with an incidence of 
missing genotypes across individuals greater 
than 5% or SNP with minor allele frequency 
less than 5% were discarded, leaving 36,971 
SNP for the analyses. After editing, 0.01% of 
the SNP genotypes were missing. These 
genotypes   were   then  imputed  with   Beagle  
 
 
 

3.3.2 (see Jiménez-Montero et al., 2013a for 
more details). Only sires with reliability higher 
than 75% in their progeny proofs were 
included. Genotypes of 18,443 bulls, and 
pedigree data of 63 721 animals were used. 
 
 
2.2  Phenotypes 
 
Sire deregressed proofs (DRP) for 25 
phenotypic traits were used as phenotypes. The 
phenotypic traits included 5 productive traits: 
milk yield (MY), fat yield (FY), protein yield 
(PY), fat percentage (FP) and protein 
percentage (PP); 17 type traits: stature (STA), 
chest width (CW), body depth (BD), angularity 
(ANG), rump angle (RA), rump width (RW), 
rear legs, side view (RLSV), rear legs, rear 
view (RLRV), foot angle (FA), fore udder 
attachment (FUA), rear udder attachment 
(RUA), suspensory ligament (SL), udder depth 
(UD), fore teat placement (FTP), rear teat 
placement (RTP), teat length (TL) and feet and 
legs (FL); and 3 functional traits: somatic cell 
score (SCS), longevity (LONG) and days open 
(DO). 
 
 
2.3  Training and testing data sets 
 
The gain in predictive ability was assessed by 
a cross-validation.Sires were divided in two 
groups, a training and a testing data set, 
according to the year of birth. The January 
2009 DRP were used as response variables in 
the training, whereas, December 2011 DRP 
were used as a prediction goal in the testing 
set. The testing data set included only sons of 
sires in the training set. This classification 
gave 14,487 training bulls born before 2005 
and 3,956 testing bulls born after 2005. The 
minimum number of effective daughter 
contribution (EDC) allowed per sire was 15. 
The EDC wasalso used as weighting factor to 
account for differences in progeny group size 
when computing the correlation between direct 
genomic values and DRP (Jiménez-Montero et 
al., 2012b). Design of the training and testing 
data sets followed the recommendations of 
Mäntysaari et al. (2010). 
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2.4  Statistical models for genomic 
evaluation 

 
Bayesian Reproducing Kernel Hilbert Spaces 
(RKHS) 
 
The model can be formulated as follows: 
 

eΚαΧβy ++=  
 
where y is a vector of the mean adjusted 
records for progeny of sires in the training set. 
The first term (Χβ ) is a parametric term with 
β  as a vector of systematic effects or nuisance 
parameters (only µ  was fitted in this case, 
since the data were pre-corrected), and Χ  is 
the incidence matrix. The nonparametric term 
is given by Κα , where Κ  is a positive 
definite matrix of kernels, and α  is a vector of 
nonparametric coefficients that are assumed to 
be distributed as ),0(~ 21

ασ
−Κα N , with 2

ασ  
representing the reciprocal of a smoothing 
parameter. The genome-enhanced breeding 
values can be calculated as Καu = . The 
residuals e  were assumed to be distributed as 

),0( 21
eN σ−= ΝR , where { }in=Ν  is a 

diagonal matrix with elements in  representing 

the number of progeny of sire i and 2
eσ is the 

residual variance. 
 

In this study, the positive definite matrix of 
kernels was the genomic matrix (VanRaden, 
2008; Yang et al., 2010). This genomic 
relationship matrix can be calculated as  
 

∑
= −

−−
=

L
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where ikg  refers to the gene frequency value 
genotypes AA, Aa and aa, coded as 1, 0.5 and 
0, respectively, of individual i at locus k where 
i = 1, n and k = 1, L. Gene frequency is half the 
number of copies of the reference allele A. The 
estimate of the allele frequency in the current 
population is designed as kp̂ . This RKHS 
model was solved in a Bayesian context using 
Gibbs Sampling. 
 
 

Simple G-BLUP (GB) 
 
A basic G-BLUP model, using genomic matrix 
built following method 1 of VanRaden 
(2008),was used to predict direct genomic 
values: 

eΖg1y ++= µ  
 
where g a vector of random additive is genetic 
effects from genomic data and e  is the random 
residual. The matrix Ζ  is the incidence matrix 
linking breeding values g  to the observations. 
 

The random effects have the following 
assumptions: g ~ ),( 2

gN σG0  and e ~

),( 2
eN σI0  where G  is the genomic co-

variance matrix. 
 
 
G-BLUP with polygenic effect (GBP) 
 
This model was the same as the above with a 
residual polygenic effect not captured by the 
SNPs as follows: 

eΖg1y ++= ωµ , 
where  

gug +=ω  
 

with 22
ω )( guVar σσ GAg += , where A is the 

pedigree-based relationship matrix. 
 

Defining 222
gug σσσ

ω
+= and 2 2/u gω

ω σ σ=

,then 2 2ωu gω
σ σ=  and 22 )ω1(

ω
σσ gg −= , and

[ ] 2
ω ω

)ω1(ω)( gVar σGAg −+=  
The matrix Ζ  is the incidence matrix as in 
GB, and e  is the random residual following 
the distribution e ~ ),( 2

eN σI0 .The G matrix 
was adjusted to be on the same scale as A  
(Gao et al., 2012). 
 

The evaluated values for ω ranged between 
0.05 and 0.30 for milk yield (h2 = 0.28) and 
rear legs rear view (h2 = 0.07), although only 
the results for 0.5 (GBP-5%) and 0.10 (GBP-
10%) are shown below for all traits. 
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Both GB and GBP were implemented using 
Mix99 software (Lidauer and Strandén, 1999). 

 
 
2.5 Criteria for model comparison 
 
The reliability of the genomic predictions was 
computed usingthe predicted direct genomic 
values (DGV) of bulls in the testing set and 
their December 2011 DRP. Three parameters 
were evaluated. First, the correlation was 
computed as a weighted Pearson correlation 
taking into account the EDC (Mantysaari et al., 
2010) as follows: 
 

)/1(2 EDCkrr +=  
 
where 2r  is the square of Pearson's coefficient 
of correlation and 22 /)4( hhk −= . Secondly, 
the regression coefficientof the realized DRP 
on the estimated DGV was also evaluated. And 
finally, the mean square error (MSE) of 
predictions was also estimated. 
 
 
Accuracy of comparisons 
 
Means and confidence intervals were estimated 
using bootstrapped samples (Efron and 
Tibshirani, 1986) in each evaluated trait and 
methodology. Pairs for comparisons were the 
predicted DGV of bulls in the testing set and 
their December 2011 DRP. 
 

One thousand samples were drawn with 
replacement from the whole testing set. For 
each bootstrapped sample the correlation, the 
regression coefficient and the MSE was 
computed. 
 

Finally, the confidence intervalsfor the 
comparison criteria were computed as the 
narrowest interval containing 95% of the 
bootstrap replicates. 

 
 
Selection effectiveness 
 
This measure was evaluated as seltop αα / , 

where selα  represents a given percentage of 
bulls ranked by their predicted DGV and topα  

is the percentage of bulls selected by the model 
that were in the same percentile according to 
their realized DRP. This parameter can be 
interpreted as the fraction of young bulls as 
ranked by DGV that actually included at least 
1 truly top bull, or similarly, as the fraction of 
truly top bulls that was included in a given set 
of top young bulls as predicted by DGV(see 
Jiménez-Montero et al., 2013b for more 
details). 
 
 
3. Results 
 
The observed values for correlation, regression 
coefficient and MSE were very similar to those 
obtained from bootstrapped replicates (data not 
shown). Consequently, the mean and 
confidence interval from bootstrapped 
replicates are presented and discussed below. 
 
 
3.1 Correlation 
 
Table 1 shows the results for correlation 
obtained with the four methods considered. 
 

From the methodologies only including 
genomic information, RKHS showed the best 
accuracy in fourteen out of 25 traits. However, 
GB only showed the best precision in 4 traits. 
 

The methodologies including genomic and 
genealogical information showed larger 
correlation in 17 and 14 traits for GBP-5% and 
GBP-10%, respectively. 
 

Regarding those traits with a larger weight 
on the Spanish selection index ICO, both 
RKHS and GBP-5% showed similar accuracy 
for PY and UD, whereas RKHS achieved 
better correlation for MY and GBP-5% for 
LONG. In general, RKHS showed better 
accuracy in production traits, while GBP-5% 
behaved better in Type Traits. 
GBP-5% and GBP-10% showed similar 
accuracy in most traits. 
 
 
3.2 Regression coefficient 
 
The slopes obtained from the analysed 
approaches  are shown in Table 2. A regression 
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coefficient of DRP on genomic predictions 
lower than one indicates overestimation of the 
genomic predictions, while a coefficient larger 
than one indicates underestimation. 
 

It has been indicated that inflation of 
genomic predictions is critical in practice 
(Patry and Ducrocq, 2009) because it can give 
a biased advantage to juvenile over older 
progeny tested bulls (Aguilar et al., 2010). 
 

In this study, RKHS provided regression 
coefficients below 1 except for DO, while GB 
yielded regressions over 1 in all cases and 
GBP also provided values above 1 (except for 
FL) indicating underestimation of the genomic 
predictions. 
 

Summarizing, the mean observed 
regression coefficient for GBP-5% and GBP-
10% were 1.10 (0.84 – 1.27) and 1.12 (0.86 – 
1.29), respectively. In addition, the averaged 
slope for GB was 1.31 (1.08 – 1.48). On the 
contrary, the regression coefficients obtained 
from RKHS were mostly below the unity 
(observed mean = 0.88, ranging between 0.63 
– 1.03). 
 

The only two traits where no relevant 
differences (overlapping bootstrap confidence 
intervals) were detected between RKHS and 
the other three evaluated methods were LONG  
and DO. The reason could be that LONG and 
DO have a higher uncertainty when compared 
with other traits. 
 
 

Bayesian RKHS showed a higher endpoint 
of 95% confidence interval in practically all 
traits slightly lower than 1, whereas GBP-5% 
showed a lower endpoint of 95% confidence 
interval in practically all traits slightly greater 
than 1.  

 
More fine-tuned for both models will be 

probably needed to achieve INTERBULL 
validation test criteria (Mӓntysaari et al., 2010) 
for combined proofs. 
 
 
 
 
 
 

3.3 Mean square error 
 
The mean square error for each trait and 
methodology is shown in Table 3. From the 
methodologies only including genomic 
information, RKHS showed smaller MSE in 15 
out of 25 traits, and GB only in one trait. 
 

In addition, from the methodologies 
including both pedigree and genomic 
information, GBP-5% showed a better 
performance in 13 traits and GBP-10% only in 
8 traits out of 25. The confidence intervals 
indicated a large MSE for the GB approach in 
the majority of the evaluated traits. 
 

For the traits with larger weight in the 
Spanish ICO, RKHS showed better MSE for 
MY and PY, whereas GBP-10% was better for 
LONG. 

 
 
3.4 Selection effectiveness 
 
Three approaches (RKHS, GBP-5% and GBP-
10%) performed in a similar manner at 
selecting top-ranked bulls regarding their 
observed DRP (Figure 1). Most relevant 
differences were observed for GB 
methodology. 
 
 
4. Discussion 
 
Results of this study show that non-parametric 
model was more accurate than the simple G-
BLUP. G-BLUP method needs the inclusion of 
a polygenic effect to obtain similar results to  
 
 
those achieved with RKHS. More specifically, 
a weight of 5% of the polygenic effect showed 
a similar precision to RKHS approach. This is 
in agreement with Liu et al. (2010), which 
indicated a weight of 5% - 10% for the 
polygenic effect. 
 
  



INTERBULL BULLETIN NO. 47. Nantes, France, August 23 - 25, 2013 

 

72 

 

Respect the weighting of the residual 
polygenic effect, Gao et al. (2012) indicated 
that increasing the weighting factor reduces 
bias and gives highest reliability but the 
optimal weighting factors differed between 
traits. However, our results showed small 
differences between 5% and 10% weight 
results. Therefore, trait-specific weighting 
factors should be also investigated in models 
including a polygenic effect. 
 

In addition, further research is also needed 
to optimize the computational requirements of 
RKHS approach for routinely genomic 
evaluations, because the elapsed CPU time and 
the random access memory used were higher 
than the GBLUP requirements. 

 
 

Conclusions 
 
The results of this study showed that within the 
methodologies evaluated, RKHS performs 
better than GB, and matches the performance 
of GBP approaches. More specifically, a 
weight of 5% of the polygenic effect on the 
GBP model showed a similar accuracy to 
RKHS approach. It might be expected that the 
inclusion of pedigree information and the 
optimization of the computational 
requirements in RKHS could further improve 
the performance of this semi-parametric 
method for routine genomic evaluations.  
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Trait RKHS GB GBP-5% GBP-10% 
MY 0.84 (0.82 - 0.86) 0.77 (0.75 - 0.79) 0.82 (0.81 - 0.84) 0.82 (0.80 - 0.84) 
FY 0.82 (0.80 - 0.84) 0.78 (0.76 - 0.80) 0.82 (0.80 - 0.83) 0.81 (0.79 - 0.83) 
PY 0.81 (0.79 - 0.83) 0.78 (0.76 - 0.80) 0.81 (0.79 - 0.83) 0.81 (0.79 - 0.83) 
FP 0.92 (0.91 - 0.93) 0.84 (0.83 - 0.86) 0.90 (0.88 - 0.91) 0.89 (0.88 - 0.91) 
PP 0.92 (0.91 - 0.93) 0.86 (0.84 - 0.87) 0.90 (0.88 - 0.91) 0.90 (0.88 - 0.91) 

STA 0.84 (0.83 - 0.86) 0.79 (0.77 - 0.80) 0.83 (0.81 - 0.84) 0.83 (0.81 - 0.84) 
CW 0.83 (0.80 - 0.85) 0.81 (0.79 - 0.84) 0.84 (0.81 - 0.86) 0.84 (0.82 - 0.86) 
BD 0.84 (0.82 - 0.86) 0.84 (0.81 - 0.85) 0.85 (0.83 - 0.87) 0.85 (0.83 - 0.87) 

ANG 0.90 (0.88 - 0.92) 0.91 (0.89 - 0.93) 0.92 (0.90 - 0.94) 0.92 (0.90 - 0.94) 
RA 0.79 (0.77 - 0.81) 0.75 (0.73 - 0.77) 0.79 (0.77 - 0.81) 0.79 (0.77 - 0.81) 
RW 0.80 (0.78 - 0.82) 0.76 (0.74 - 0.79) 0.80 (0.78 - 0.81) 0.80 (0.78 - 0.81) 

RLSV 0.74 (0.72 - 0.77) 0.75 (0.72 - 0.77) 0.77 (0.74 - 0.79) 0.77 (0.74 - 0.79) 
RLRV 0.63 (0.60 - 0.66) 0.65 (0.62 - 0.68) 0.65 (0.62 - 0.69) 0.65 (0.62 - 0.68) 

FA 0.69 (0.65 - 0.72) 0.72 (0.69 - 0.75) 0.71 (0.68 - 0.74) 0.71 (0.68 - 0.75) 
FUA 0.83 (0.80 - 0.85) 0.83 (0.81 - 0.86) 0.85 (0.82 - 0.87) 0.85 (0.82 - 0.87) 
RUA 0.83 (0.81 - 0.86) 0.83 (0.81 - 0.85) 0.85 (0.84 - 0.88) 0.85 (0.83 - 0.87) 
SL 0.86 (0.84 - 0.89) 0.85 (0.82 - 0.87) 0.87 (0.85 - 0.89) 0.87 (0.85 - 0.89) 
UD 0.81 (0.79 - 0.83) 0.77 (0.75 - 0.78) 0.81 (0.79 - 0.83) 0.80 (0.79 - 0.82) 
FTP 0.83 (0.81 - 0.85) 0.77 (0.75 - 0.79) 0.82 (0.80 - 0.84) 0.82 (0.80 - 0.84) 
RTP 0.78 (0.76 - 0.80) 0.72 (0.70 - 0.74) 0.77 (0.75 - 0.79) 0.77 (0.75 - 0.79) 
TL 0.79 (0.77 - 0.81) 0.76 (0.74 - 0.78) 0.79 (0.77 - 0.81) 0.79 (0.77 - 0.81) 
FL 0.59 (0.55 - 0.63) 0.63 (0.60 - 0.67) 0.62 (0.57 - 0.66) 0.62 (0.58 - 0.66) 

SCS 0.81 (0.79 - 0.83) 0.77 (0.75 - 0.79) 0.81 (0.79 - 0.83) 0.80 (0.78 - 0.82) 
LONG 0.71 (0.51 - 0.88) 0.87 (0.70 - 1.00) 0.87 (0.71 - 1.00) 0.87 (0.72 - 1.00) 

DO 0.73 (0.68 - 0.76) 0.73 (0.69 - 0.77) 0.71 (0.67 - 0.75) 0.71 (0.67 - 0.75) 
 
 
 
 
 
 
 
 
 

Trait RKHS GB GBP-5% GBP-10% 
MY 0.95 (0.92 - 0.97) 1.20 (1.16 - 1.23) 1.11 (1.07 - 1.14) 1.12 (1.09 - 1.15) 
FY 0.90 (0.87 - 0.93) 1.25 (1.21 - 1.30) 1.09 (1.06 - 1.13) 1.10 (1.07 - 1.14) 
PY 0.91 (0.88 - 0.93) 1.21 (1.17 - 1.25) 1.09 (1.06 - 1.12) 1.10 (1.07 - 1.14) 
FP 0.93 (0.91 - 0.95) 1.22 (1.18 - 1.25) 1.10 (1.07 - 1.12) 1.11 (1.08 - 1.14) 
PP 0.95 (0.92 - 0.97) 1.28 (1.25 - 1.32) 1.14 (1.10 - 1.16) 1.15 (1.12 - 1.18) 

STA 0.81 (0.79 - 0.83) 1.13 (1.09 - 1.16) 1.00 (0.97 - 1.02) 1.01 (0.98 - 1.04) 
CW 0.89 (0.86 - 0.92) 1.43 (1.38 - 1.48) 1.17 (1.12 - 1.21) 1.19 (1.14 - 1.23) 
BD 0.88 (0.85 - 0.91) 1.32 (1.28 - 1.37) 1.12 (1.08 - 1.16) 1.14 (1.10 - 1.18) 

ANG 0.89 (0.86 - 0.93) 1.35 (1.30 - 1.39) 1.14 (1.10 - 1.18) 1.16 (1.12 - 1.20) 
RA 0.90 (0.88 - 0.93) 1.29 (1.25 - 1.34) 1.12 (1.08 - 1.15) 1.13 (1.10 - 1.17) 
RW 0.88 (0.85 - 0.91) 1.30 (1.26 - 1.35) 1.12 (1.08 - 1.16) 1.13 (1.09 - 1.17) 

RLSV 0.82 (0.79 - 0.86) 1.35 (1.29 - 1.40) 1.10 (1.06 - 1.14) 1.12 (1.07 - 1.16) 
RLRV 0.74 (0.69 - 0.78) 1.30 (1.23 - 1.37) 1.02 (0.97 - 1.08) 1.05 (0.99 - 1.11) 

FA 0.81 (0.77 - 0.86) 1.42 (1.34 - 1.50) 1.10 (1.04 - 1.17) 1.13 (1.06 - 1.19) 
FUA 0.84 (0.82 - 0.88) 1.35 (1.30 - 1.40) 1.13 (1.08 - 1.17) 1.15 (1.11 - 1.19) 
RUA 0.91 (0.88 - 0.94) 1.35 (1.30 - 1.40) 1.19 (1.15 - 1.23) 1.20 (1.16 - 1.25) 
SL 0.99 (0.95 - 1.03) 1.47 (1.41 - 1.53) 1.26 (1.22 - 1.31) 1.28 (1.24 - 1.33) 
UD 0.85 (0.82 - 0.88) 1.24 (1.20 - 1.28) 1.08 (1.04 - 1.11) 1.09 (1.06 - 1.13) 
FTP 0.88 (0.86 - 0.91) 1.30 (1.25 - 1.34) 1.12 (1.08 - 1.16) 1.13 (1.09 - 1.17) 
RTP 0.86 (0.84 - 0.89) 1.28 (1.23 - 1.33) 1.13 (1.09 - 1.17) 1.14 (1.10 - 1.18) 
TL 0.92 (0.89 - 0.95) 1.40 (1.36 - 1.45) 1.17 (1.14 - 1.21) 1.19 (1.15 - 1.23) 
FL 0.63 (0.59 - 0.68) 1.08 (1.00 - 1.15) 0.84 (0.78 - 0.90) 0.86 (0.80 - 0.92) 

SCS 0.94 (0.91 - 0.97) 1.35 (1.31 - 1.40) 1.15 (1.10 - 1.18) 1.16 (1.12 - 1.20) 
LONG 0.87 (0.63 - 1.11) 1.36 (1.04 - 1.64) 1.01 (0.82 - 1.19) 1.04 (0.81 - 1.23) 

DO 1.03 (0.98 - 1.10) 1.48 (1.40 - 1.57) 1.11 (1.04 - 1.18) 1.14 (1.06 - 1.21) 
Abbreviations as in Table 1.

Table 1. Correlation of predictions. Mean of the 1000 bootstrap replicates. Parenthesis 
indicate confidence interval containing 95% of replicates. In bold: best method within trait. 
 

MY: milk yield; FY: fat yield; PY: protein yield; FP: fat percentage; PP: protein percentage; STA: 
stature; CW: chest width; BD: body depth; ANG: angularity; RA: rump angle; RW: rump width; 
RLSV: rear legs, side view; RLRV: rear legs, rear view; FA: foot angle; FUA: fore udder attachment; 
RUA: rear udder attachment; SL: suspensory ligament; UD: udder depth; FTP: fore teat placement; 
RTP: rear teat placement; TL: teat length; FL: feet and legs; SCS: somatic cell score; LONG: 
longevity; DO: days open. 
 Table 2. Slope of predictions. Mean of the 1000 bootstrap replicates. Parenthesis indicate 
confidence interval containing 95% of replicates. In bold: best method within trait. 



INTERBULL BULLETIN NO. 47. Nantes, France, August 23 - 25, 2013 

 

75 

 

 
 
 

Trait RKHS GB GBP-5% GBP-10% 
MY 177438.45 (169456.35 - 185618.44) 237846.66 (227314.84 - 247675.13) 196069.36 (187370.43 - 204453.62) 198435.17 (190483.75 - 207213.51) 
FY 300.36 (287.43 - 315.38) 358.92 (343.71 - 374.58) 307.86 (295.32 - 322.29) 310.79 (297.58 - 325.50) 
PY 210.49 (200.32 - 219.33) 271.67 (260.71 - 283.52) 227.00 (217.10 - 237.71) 229.06 (217.27 - 239.22) 
FP 0.02 (0.02 - 0.02) 0.03 (0.03 - 0.03) 0.02 (0.02 - 0.02) 0.02  (0.02 - 0.03) 
PP 0.01 (0.01 - 0.01) 0.01 (0.01 - 0.01) 0.01 (0.01 - 0.01) 0.01 (0.01 - 0.01) 

STA 0.51 (0.49 - 0.54) 0.54 (0.52 - 0.56) 0.47 (0.45 - 0.49) 0.47 (0.45 - 0.49) 
CW 1.39 (1.33 - 1.46) 1.50 (1.43 - 1.57) 1.37 (1.31 - 1.44) 1.38 (1.32 - 1.44) 
BD 1.03 (0.98 - 1.08) 1.08 (1.03 - 1.13) 0.99 (0.95 - 1.04) 1.00 (0.95 - 1.04) 

ANG 0.83 (0.78 - 0.87) 0.91 (0.86 - 0.96) 0.82 (0.77 - 0.86) 0.82 (0.77 - 0.87) 
RA 0.82 (0.78 - 0.86) 0.91 (0.87 - 0.95) 0.81 (0.77 - 0.85) 0.82 (0.78 - 0.86) 
RW 0.84 (0.80 - 0.88) 0.94 (0.89 - 0.98) 0.84 (0.80 - 0.88) 0.84 (0.81 - 0.89) 

RLSV 1.31 (1.24 - 1.37) 1.32 (1.25 - 1.39) 1.24 (1.18 - 1.30) 1.24 (1.19 - 1.31) 
RLRV 2.02 (1.93 - 2.12) 2.02 (1.92 - 2.11) 1.93 (1.83 - 2.02) 1.94 (1.85 - 2.03) 

FA 2.21 (2.11 - 2.32) 2.23 (2.12 - 2.34) 2.15 (2.06 - 2.27) 2.15 (2.05 - 2.25) 
FUA 1.25 (1.19 - 1.31) 1.44 (1.38 - 1.51) 1.27 (1.21 - 1.33) 1.28 (1.22 - 1.33) 
RUA 0.99 (0.94 - 1.04) 1.20 (1.14 - 1.25) 1.03 (0.98 - 1.08) 1.04 (0.99 - 1.09) 
SL 1.30 (1.24 - 1.37) 1.57 (1.50 - 1.65) 1.40 (1.33 - 1.47) 1.42 (1.35 - 1.49) 
UD 0.71 (0.68 - 0.74) 0.85 (0.81 - 0.89) 0.71 (0.68 - 0.75) 0.72 (0.69 - 0.76) 
FTP 0.67 (0.64 - 0.71) 0.81 (0.77 - 0.85) 0.69 (0.66 - 0.72) 0.70 (0.67 - 0.73) 
RTP 0.60 (0.58 - 0.63) 0.70 (0.67 - 0.74) 0.61 (0.58 - 0.64) 0.62 (0.59 - 0.64) 
TL 0.79 (0.75 - 0.83) 0.90 (0.85 - 0.94) 0.80 (0.76 - 0.84) 0.81 (0.77 - 0.85) 
FL 2.32 (2.22 - 2.44) 2.39 (2.27 - 2.52) 2.29 (2.17 - 2.39) 2.30 (2.18 - 2.40) 

SCS 93.78 (89.75 - 98.55) 109.93 (104.78 - 114.54) 96.95 (92.72 - 101.12) 97.84 (93.66 - 102.54) 
LONG 546.86 (448.09 - 649.12) 470.10 (383.25 - 553.54) 463.45 (376.62 - 548.32) 461.52 (381.03 - 550.24) 

DO 409.63 (384.94 - 434.70) 413.87 (387.97 - 438.51) 410.64 (387.59 - 435.65) 412.10 (387.93 - 437.77) 
 
 
 
 
 
 
 
 
 

Table 3. Mean square error of predictions. Mean of the 1000 bootstrap replicates. Parenthesis indicate confidence interval containing 95% of 
replicates. In bold: best method within trait. 
 

MY: milk yield; FY: fat yield; PY: protein yield; FP: fat percentage; PP: protein percentage; STA: stature; CW: chest width; BD: body depth; ANG: 
angularity; RA: rump angle; RW: rump width; RLSV: rear legs, side view; RLRV: rear legs, rear view; FA: foot angle; FUA: fore udder attachment; RUA: 
rear udder attachment; SL: suspensory ligament; UD: udder depth; FTP: fore teat placement; RTP: rear teat placement; TL: teat length; FL: feet and legs; 
SCS: somatic cell score; LONG: longevity; DO: days open. 
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Figure 1. Percentage of correctly assigned bulls over the total 
population for a given selection intensity (averaged across traits, 
except LONG). 
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