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Abstract 
 
Genetic prediction for complex traits is usually based on models including individual or marker 
effects. Alternatively, models can include both the individual and the marker effects. In particular, we 
studied a model combining effects for base individuals, realized Mendelian sampling in descendants 
and marker effects. The predictive ability of this model, measured as the correlation between true 
(simulated) and predicted genetic values, was similar to that of the marker model.  As expected, the 
Mendelian sampling model was worthwhile when markers captured a low fraction of total genetic 
variance. 
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Introduction 
 
Most models used for genetic prediction and 
genetic evaluation include "individual" or 
"marker" data to represent genetic effects. 
Carré et al. (2013) studied a third group of 
models including both "marker" and 
"individual" effects. We recall this model and 
we discuss its predictive ability, relative to the 
usual marker model. Finally, originality, limits 
and possible extensions of the model are 
discussed. 
 
 
Standard models for genetic prediction 
 
Without DNA data, "individual effects" are 
used to represent additive genetic effects (e.g., 
Henderson, 1975):  
 
𝐲 =  𝛍 + 𝐙𝐮 + 𝐞   [1] 
 
𝒚 is a vector of phenotypes 
𝝁 is a constant vector  
𝒁 is an incidence matrix  
𝐮 is a vector of individual effects, with 
Var(𝐮) = 𝐀σu2, with 𝐀 being the relationship 
matrix amongst individuals. 
𝐞 is a vector of residuals, with Var(𝐞) = 𝐈σe2, 
with 𝐈 being an identity matrix 
 
A further usual assumption is Cov(𝐞,𝐮) = 𝟎. 

When there is only one phenotype per 
individual Z=I and the only information 
available to distinguish individual effects from 
residuals is given by the coefficients in the 
relationship matrix 𝐀 which depend on genetic 
transmission data (diploids originate from two 
parental gametes) and the assumed known 
variance of the unobserved Mendelian 
sampling effects (Quaas, 1976; Henderson, 
1976). 
 

With molecular data available, prediction 
models evolved to include markers in the 
model (Meuwissen et al., 2001):  

 
𝐲 =  𝛍 + 𝐙𝐖𝐦 + 𝐞   [2] 
 
where: 
 
𝐦 is a vector of "marker effects" 
𝐖 is a matrix of marker genotypes. With 
biallelic markers such as SNP, usual elements 
of 𝐖 are 0, 1 or 2, the number of, say, the 
allele "1" of the marker genotype. 
 

In genomic selection models, the simplest 
assumed (co)variances are: 

 
Var(𝐦) = 𝐈Nmσm

2 , with Nm being the number 
of markers, and Cov(𝐞,𝐦) = 𝟎 
 
If it is further assumed that 𝐮 = 𝐖𝐦 and 
Var(𝐮) = 𝐖𝐖′kσm2 , k being a scaling 
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factor, it is possible to compute predictions 
with the individual model [1], amended such 
that the relationship matrix 𝐀 is replaced by 
the realized "genomic relationship" matrix 
𝐆 = 𝐖𝐖′ (VanRaden, 2008; Goddard, 2009). 
Application of BLUP to this model has been 
termed "genomic BLUP" and improvements 
have been proposed to make assumptions more 
realistic (departures from the homogeneous 
variances for marked effects in model [2]) and 
practical implementations when only part of 
the individuals are genotyped making 
necessary to mix the 𝐀 and the 𝐆 matrices for 
the combined analyses of individuals with or 
without genotypes (e.g. Aguilar et al., 2011). 
 

Based on analytical developments (Gianola 
et al. (2009) and experimental evidence (Yang 
et al., 2011; De los Campos et al., 2009; 
Duchemin et al., 2012), Carré et al. (2013) 
claimed that the alternative assumptions 
𝐮 ≠ 𝐖𝐦 and Var(𝐮) ≠ 𝐖𝐖′kσm2  are likely in 
an outbred population, and they studied a 
model including individual and marker effects: 
  
𝐲 =  𝛍 + 𝐙𝐮 + 𝐙𝐖𝐦 + 𝐞  [3] 
 
with assumptions: 
 
Var(𝐮) = 𝐑σu2 , and 
Cov(𝐞,𝐮) = Cov(𝐮,𝐦) = 𝟎, 
 
where 𝐑𝜎𝑢2 is the (co)-variance matrix of 
individual effects. Usually, as in model [1], 
𝐑 = 𝐀, the additive relationship matrix 
computed theoretically from genealogy data. 
Note that the terms in model [3] are redundant 
if it is assumed that 𝐮 = 𝐖𝐦. 
 
 
Mendelian segregation model 
 
Starting from model [3], Carré et al. (2013) 
developed a model where the individual effect 
of a descendant is a function of individual 
effects of its ancestors (individuals in the base) 
and Mendelian sampling which can be traced 
by DNA data: 
 
𝐮𝐝 = 𝐃𝐮𝐛 + (𝐖𝐝 − 𝐃𝐖𝐛)𝐦   [4] 
 
where: 
 

𝐮𝐝 and 𝐮𝐛 represent the effects of descendants 
and base individuals 
𝐖𝐝 and 𝐖𝐛 represent the genotypes of 
descendants and base individuals 
D is a genetic transmission matrix 
 

Base individuals are defined for a given 
genealogy as the most distant known ancestors 
of individuals with recorded phenotypes, i.e., 
they do not have phenotypes and their parents 
are unknown. 
 
Using [4] in model [3] gives: 
 
𝐲𝐝 = 𝛍 + 𝐙d𝐃𝐮b + 𝐙d (𝐖d − 𝐃𝐖b)𝐦+
𝐙d 𝐖d𝐦+ 𝐞    [5] 
 
where the phenotypes of descendants 𝐲𝐝 are 
the sum of the effects of base individuals 
(second term), realized Mendelian sampling 
effects (third term) and marker effects (fourth 
term). In the term ZdDub, Zd relates records to 
individuals (descendants d) and D relates 
individuals to ancestor effects ub via simple 
coefficients of genetic transmission (including 
consanguinity, i.e., multiple contributions of an 
ancestor to an individual).  
 

This approach opens further possibilities for 
modeling, according to the context of 
prediction. If previous knowledge on marker 
effects is available a possible "disjoint model" 
is: 
 
𝐲𝐝 = 𝛍 + 𝐙d𝐃𝐮b + 𝐙d (𝐖d1 − 𝐃𝐖b1)𝐦𝟏+
𝐙d 𝐖d2𝐦𝟐+ 𝐞    [6] 
 
where m2 represents markers of QTL and m1 
the rest of the markers. 
 

In the absence of previous knowledge, an 
alternative is the "embedded model":  

 
𝐲 = 𝛍 + 𝐙d𝐃𝐮b + 𝐙d (2𝐖d − 𝐃𝐖b)𝐦+ 𝐞
     [7] 
 

The term Zd (2Wd-DWb) m in [7] groups 
two parts: Zd (Wd-DWb) m, the realized 
mendelian sampling effects, and ZdWdm 
which represents the direct relations between 
markers and phenotypes. 
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Relative predictive ability of the embedded 
Mendelian sampling (MS) model 
 
Carré et al. (2013) studied by simulation the 
predictive ability of the embedded MS model 
(MS model as in [7]), relative to that of the 
marker model (M model as in [2]). Predictive 
ability was the correlation between true 
(simulated) and predicted individual effects. 
 

Six contexts of prediction were studied: 
high and low marker density (200 and 2000 
markers per chromosome of 1 Morgan) 
combined with the fraction of genetic variance 
explained by markers (90, 50 and 10%). 
Prediction was for a trait with overall 
heritability of 0.4. The studied population is 
described by Carré et al. (2013). Each 
prediction context was replicated 200 times 
using the QMSim software (Sargolzaei and 
Frenkel, 2009). Unknowns of the compared 
models, marker (M) and Mendelian sampling 
(MS), were obtained with the BLUP method, 
under the following assumptions for model 
MS: 

 
ub  ~ N(0, I 𝝈𝒖𝟐) 
m ~ N(0, I 𝝈𝒎𝟐 ) 
Cov(ub,m)=0     [8] 
 

Mean accuracies over 200 replicates when 
using 2000 SNP markers are presented in 
Figure 1 for 10, 50 and 90% of total genetic 
variance explained by QTL. Accuracies were 
highest (0.76 for model M and 0.74 for model 
MS) in the training data when the genetic 
variance explained by QTL was high (90%). 
The lowest correlations occurred for the test 
data under scenario 10% (0.36 for M vs. 0.40 
for MS). The MS model gave the best 
predictions when the infinitesimal effects were 
important (scenario 10%) and model M gave 
the best predictions when QTL effects 
represented 90% of genetic variance. 
Differences between mean accuracies of two 
models were small and non-significant 
(P<0.05).  
 
 
 

 
Figure 1. Accuracy of the Marker (M) and 
Mendelian segregation (MS) models for the 
three simulation scenarios with 10, 50, or 90% 
of the total genetic variance explained by QTL. 
From Carré et al. (2013) 
 

When fewer markers were used (200 SNP 
per chromosome), all accuracies were lowered 
but the methods ranked as when using more 
markers (2000 SNP per chromosome; Table 1). 
The accuracy of the MS model was 12% 
higher than that of the M model for the 
scenario with the 10% of genetic variance 
explained by QTL and 5% lower when the 
QTL explained the 90% of total variance. 
 
Table 1. Performance of the Mendelian 
sampling model: relative accuracies in the 
training and the test data*.  
Simulated scenario Training data 

(%)a 

Test data 

(%)a 

QTL variance 10% 

     200 SNP markers 

   2000 SNP markers 

 

103 

102 

 

112 

108 

QTL variance 50% 

     200 SNP markers 

   2000 SNP markers 

 

100 

100 

 

100 

 98 

QTL variance 90% 

     200 SNP markers 

   2000 SNP markers 

 

 99 

 97 

 

 95 

 97 
a(%) is 100 times the ratio between the average 
accuracy under the Mendelian segregation model and 
the average accuracy under the marker model 
* From Carré et al. (2013) 
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Discussion 
 
There are plausible arguments to combine 
marker effects with individual effects when 
analyzing complex traits. To do so, the strategy 
used in the MS models [5], [6] and [7] is to 
decompose the individual genetic value into 
two terms: a contribution from base 
individuals, weighted by the transmission 
matrix 𝐃, and a contribution from Mendelian 
sampling occurring at several meiosis from 
base individuals to their descendants. This 
modeling approach has two consequences. On 
one hand, we keep the genetic transmission 
information of the infinitesimal model, i.e., the 
equal contribution of parental gametes to 
progeny. On the other hand, the unobserved 
random MS is replaced by an estimate of the 
realized MS.  
 

Results of simulations indicate that the 
predictive ability of the MS embedded model 
is comparable to that of the marker model. On 
one hand, the accuracies obtained in different 
genetic scenarios suggest that the MS model 
might be useful when markers do not fully 
explain the genetic background (low QTL 
variances with high individual variance, or low 
marker density). On the other hand, the marker 
model [2] yielded slightly higher predictive 
ability than MS when QTL were important and 
marker density was high. This result reflects 
sub-optimality of the MS model to exploit 
favorable situations where markers do 
effectively capture much of total genetic 
variance. This might be explained by the 
simple distributional assumptions that we 
assumed at this exploratory stage for the base 
individuals and the marker effects of model 
MS in [7] and accompanying assumptions [8]. 
In particular, the assumption of independent 
base individuals chosen in [8] is usual in 
quantitative genetics, but, with DNA 
information and complete data it would be 
possible to make more general assumptions 
like ub ~ N (𝝁𝒖, H𝜎𝑢2), where 𝐇 represents a 
genomic matrix, thus recognizing that 
individuals in the base populations may share 
genes. Besides, model [7] can accommodate 
fixed genetic values for individuals or for 
groups of individuals in the base population.  
 
 

Further investigation is needed on variance 
component estimation of models including 
marker and individual effects. Duchemin et al. 
(2012) were able to estimate both components 
of variance from real data using model [3]. We 
are currently studying variance components 
estimation for model [7]. 
 

Also, at this stage of model development, 
we are assuming complete data, in particular 
genotypes of base individuals. In some 
situations, it may possible to impute missing 
data. Also, if genealogy is unknown and if all 
individuals are in the genotyped sample, 
parent-progeny pairs can be easily identified 
using DNA data (Rohlfs et al., 2012). 
However, to cover many variable situations in 
real life, it should be necessary to expand 
model [7] to include heterogeneous variances 
where Mendelian sampling is observed for 
some individuals but it remains a random value 
for individuals without genotyped parents. 
 

The MS model [7] is compatible with other 
representations of marker effects: haplotypes 
can be used instead of single non-phased SNP. 
The MS model is also compatible with 
approaches where some QTL are known 
(model [6]), markers are preselected or 
markers are weighted by their effects during 
prediction (e.g. Zhang et al., 2011).  
  
 
Conclusions 
 
According to the literature on prediction of 
complex traits, it is justified to keep, both, 
individual (infinitesimal) and marked gene 
effects in the statistical predictive model. We 
gave a formal derivation of a Mendelian 
sampling MS model where individual effects 
are a function of infinitesimal effects of base 
individuals and Mendelian sampling in 
descendants, traced using available DNA data. 
At this stage of research, we are assuming 
complete data, simple distributional 
assumptions for individual and marker effects, 
and known variances. First simulation results 
suggest that these simplifying assumptions 
should be extended to show general advantages 
of the MS model.  
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