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Abstract 
 

To test the hypothesis that immune responses are useful predictors of fertility in New Zealand (NZ) 

dairy cattle, we estimated genetic parameters for immune response using a small, experimental herd 

comprised of genetically divergent lines of Holstein-Friesian dairy heifers whose parents were selected 

for high or low fertility. Pedigree-based animal models fit using ASReml estimated the heritabilities of 

antibody-mediated immune response at days 14 and 21 (AMIR14 and AMIR21) and cell-mediated 

immune response (CMIR) as 0.44, 0.47 and 0.11. Genetic correlations between immune response traits 

varied: 0.67 for AMIR14 and AMIR21; -0.44 for AMIR14 and CMIR; and -0.07 for AMIR21 and 

CMIR, suggesting complex and time-dependent genetic relationships between the two types of immune 

responses. We also detected low to moderate genetic correlations between immune response traits and 

component traits of NZ’s economic selection index, Breeding Worth (BW), which were close to zero 

for lowly heritable traits like fertility. These data indicate that immune response is unlikely to be a robust 

predictor trait for lowly heritable BW component traits, but may be a useful selection trait in its own 

right as consumer preferences and regulatory agencies accentuate animal health and welfare. 
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Introduction 
 

In dairy cattle, fertility is lowly heritable, but is 

included in selection indices due to the costs of 

infertility and historical overemphasis on 

production traits at the expense of fertility via 

antagonistic genetic correlations. The NZ 

fertility trait is an index of parity-specific binary 

traits PM21 (presented for mating within 21 

days of planned start of mating) and CR42 

(calving rate in first 42 days after planned start 

of calving), the average heritability of which is 

0.03 (Harris et al., 2005). While the rate of 

genetic gain in fertility is limited by its low 

heritability, multi-trait models using highly 

heritable predictor traits with good genetic 

correlation with fertility can accelerate it. 

Immune response (IR) is an important part of a 

cow’s post-partum recovery and reproductive 

function (Fair 2015), warranting investigation 

as a potential predictor trait for fertility, and as 

an important trait for selection in its own right. 

 

Previous studies demonstrated that IR is 

moderately heritable with h2 = 0.16 to 0.64 

(Mallard et al., 1983; Wagter et al., 2000; 

Hernández et al., 2006; Thompson-Crispi et al., 

2012). Genetic correlations between fertility-

related traits and IR are low and with mixed sign 

in Canadian Holsteins, ranging from -0.19 to 

0.20 (Thompson-Crispi et al., 2012). 

 

Our objective was to estimate genetic 

parameters for three IR traits in NZ Holstein-

Friesian dairy cattle, including genetic 

correlations with traits routinely evaluated in 

NZ, including fertility. We also sought to 

account for potential bias due to genetic 

divergence in fertility in our experimental herd, 

and to obtain valid genetic correlations using 

estimated breeding values (EBV) rather than 

raw phenotypes. 

 

 

Materials and Methods 
 

Study animals 
 

The study population consisted of 535 Holstein-

Friesian heifers born into 379 herds between 

June and September 2015 and produced by 

assortative mating of low or high fertility EBV 

dams and sires to generate divergent genotypes 

(Low line heifer EBVs: n=256, μ=-5.10, 

σ=1.37; High line heifer EBVs: n=279, μ=4.99, 

σ=0.76). We reared these heifers in four 

management mobs, each consisting of a mixture 

of high and low  EBV  heifers  with a ratio of no 
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more than 40:60 either way (Meier et al., 2017). 

Some mobs were further partitioned into groups 

for immunity challenges during February and 

March 2016, such that each group was of 

similar age; there were seven immunity groups 

in total. 

 

 

Immunization Protocol 
 

Heifers were immunized at an age of 

approximately 220 days old to induce immune 

response, following the protocol described by 

Thompson-Crispi et al. (2012). Briefly, we used 

serum antibody IgG1 production to a type-2 test 

antigen, hen egg white lysozyme (HEWL), as 

an indicator of AMIR, and inflammation due to 

delayed-type hypersensitivity to Candida 

albicans, a type-1 test antigen, as an indicator of 

CMIR. Both antigens were injected 

intramuscularly (0.5mg each with adjuvant in 

1mL PBS) on the right side of the rump on days 

0 and 14, with an additional 0.1mg intradermal 

injection of C. albicans in 0.1mL of PBS to the 

right tail fold, and 0.1mL of PBS control to the 

left tail fold, on day 21. 

 

 

Data 
 

We sampled blood on days 0, 14 and 21 for 

evaluation of IgG1 concentration by modified 

ELISA. IgG1 concentration at days 14 and 21 

(AMIR14 and AMIR21) post-challenge were 

used as response variates in our models, with 

IgG1 concentration at day 0 (AMIR0) as a pre-

challenge control covariate. The log-

transformed ratio of skinfold thickness at day 21 

and day 23 (48 hours later), at either the 

treatment or control site, was used as a model 

response variate (CMIRt) or control covariate 

(CMIRc), respectively. 

 

We obtained the full pedigree of the heifers 

from the New Zealand Dairy Industry Good 

Animal Database (DIGAD), which consisted of 

10,992 records, up to 18 generations deep. We 

also extracted from DIGAD the most recent 

EBVs (January 2017) for the eight component 

traits of the national selection index (BW or 

Breeding Worth), to be used alongside IR traits 

in bivariate analyses. These EBVs included 

milk protein yield, milk fat yield, milk volume, 

liveweight, fertility, somatic cell score (SCS), 

residual survival (RSv), and body condition 

score (BCS). 

 

 

Models 
 

We fit univariate animal BLUP models for each 

of the three IR traits with fixed effects for 

immunity group, age-in-days and a control 

covariate, to estimate genetic variance and 

heritability. If the divergence in fertility 

genetics present between the two heifer lines 

was also present within the founding 

population, and if a particular trait was 

genetically correlated with fertility, then an 

appropriate model for that trait would need to 

assume two distinct distributions in genetic 

variance. This could be achieved by introducing 

a fertility line term into the model (either via 

genetic groups in the pedigree or a binary fixed 

term in the model), which would pool genetic 

variance into a single distribution, similar to 

accounting for breed divergence in multi-breed 

models. An examination of the heifer portion of 

the A-matrix revealed that the distribution of the 

off-diagonal values of either the within- or 

between-line relationship coefficients were 

largely similar (0.07 on average), apart from 

some >0.25 values for half- and full-sib 

relationships within lines, suggesting that the 

pedigree was of sufficient depth to assume a 

single distribution of genetic merit for fertility, 

and therefore for any other trait also. 

Nonetheless, we trialled models with a binary 

fertility line fixed effect, but because the 

resulting heritabilities only differed from 

models without a fertility line effect by a few 

percent, models with the effect were not 

considered any further in this analysis. 

 

We estimated genetic correlations (rg) from 

bivariate animal BLUP models that included 

fixed effects for immunity group, age-in-days 

and a control covariate, where age-in-days and 

the control covariate were applied only to IR 

response variate(s). Bivariate models with an 

EBV response variate would inevitably fail to 

converge properly due to the EBV “trait” 

having h2≈1. To address this, we initially 

deregressed the EBVs (dEBV) by dividing by 

their reliabilities (Garrick et al., 2009), but as 

reliabilities were nearly equal (0.3-0.4), the 

resulting dEBVs were essentially scaled by a 

constant, and so most models would still fail to 
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converge. To rectify this, we added additional 

noise variance to the dEBVs (nEBV) by 

randomly sampling a normal distribution with 

the known residual variance prior to each run, 

running the model 100 times per pair of 

response variates, and taking the average 

estimated rg and its SE across the 100 runs. 

Although it would be preferable to multiply the 

noise vector by the Cholesky decomposition of 

the prediction error variance/covariance matrix 

to simulate heterogeneous residual variance, 

given the limitations of our dataset (small and 

divergent), we opted to simply assume 

homogeneity of noise variance. Runs that failed 

to converge after 20 iterations, yet estimated all 

effect solutions and estimated IR h2 consistent 

with the univariate models, were permitted. 

 

To verify these estimates, we also calculated 

rg between IR and EBVs using a Pearson 

correlation in which IR genetic variance came 

from the univariate model, and EBV trait 

genetic (co)variances were the residual 

(co)variances from a bivariate model with the 

IR trait, but without random effects; these 

residual (co)variances could be considered as 

genetic (co)variances as the EBV is already a 

genetic estimate. However, standard errors 

would not be easily estimated for rg calculated 

in this way. 

 

ASReml (Gilmour et al. 2015) was used to 

perform regression model analyses; R (R Core 

Team, 2017) was used for data pre- and post-

processing, including iterative handling of 

ASReml runs. 

 

 

Results and Discussion 
 

The estimated heritabilities of the three IR 

traits, and the estimated phenotypic and genetic 

correlations between them are presented in 

Table 1. The two AMIR traits have moderate 

heritabilities and a moderately high genetic 

correlation between them. CMIR has a low 

heritability and negative genetic correlations 

with the AMIR traits, and its rg with AMIR14 is 

much stronger than with AMIR21.  However, 

the standard error (SE) of these rg are large. 

These results are consistent with those of 

previous findings (Thompson-Crispi et al., 

2012), apart from AMIR14 h2 which was 

previously lower at 0.14 ± 0.09, and its rg with 

AMIR21 was previously higher at 0.91 ± 0.21. 

 

The negative genetic correlations between 

AMIR and CMIR are consistent across studies 

and species (Thompson-Crispi et al., 2012), as 

the cytokines which promote CMIR tend to 

dampen AMIR and vice versa (Brown et al., 

1998). Any breeding strategy aiming to increase 

immunity should, therefore, incorporate both 

types of immune response to avoid adverse 

correlated responses to selection. Despite the 

antagonistic genetic correlations between them, 

the fact that the rg are low to moderate means 

that genetic improvement in both is 

simultaneously possible, particularly for 

AMIR21 which has a low rg with CMIR. 

 

Table 1. Estimated heritabilities (diagonal), 

genetic (above diagonal) and phenotypic 

(below diagonal) correlations of immune 

response traits, with standard error. 
 AMIR14 AMIR21 CMIRt 

AMIR14  0.44 ± 0.14 0.67 ± 0.17 -0.44 ± 0.43 

AMIR21  0.44 ± 0.04 0.47 ± 0.15 -0.07 ± 0.40 

CMIRt -0.03 ± 0.05 0.01 ± 0.05  0.11 ± 0.10 

 

Estimated genetic correlations between the 

three IR traits and the eight component traits of 

BW are presented in Table 2, along with the 

known heritabilities of the BW traits. The 

correlations estimated using a noise resampling 

schema generally aligned well with those 

determined via a Pearson correlation, except for 

CMIR with production traits (milk protein, fat 

and volume), where the resampling schema 

provided much more negative correlations. The 

standard errors were large for all correlations, 

particularly for residual survival. Although our 

dataset is limited in size, the results still offer 

novel insight into the correlations that exist 

between immunity and routinely evaluated 

traits in NZ. Positive genetic correlations are 

considered beneficial in NZ for all BW traits 

except somatic cell score. 

 

We identified negative associations between 

all IR and production traits, whereas other 

studies have reported both negative and positive 

associations: Thompson-Crispi et al. (2012) 

report rg = 0.16 between CMIR and milk yield; 

Heriazon (2007) report rg = -0.15 for CMIR  and 
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protein% and rg = 0.18 for AMIR and fat%; and 

Wagter et al. (2003) report negative phenotypic 

associations between AMIR and protein or fat 

yields but positive phenotypic associations 

between AMIR and milk yield. This variety of 

findings, along with the fact that the rg are all 

low with high SE, indicate that selecting on 

immunity is unlikely to negatively affect 

production.  

 

Table 2. Genetic correlations between immune response traits and BW component traits, estimated by 

either a noise resampling schema (with standard error) or a Pearson correlation. 

    AMIR14   AMIR21   CMIRt 

BW trait h2 Resampling Pearson   Resampling Pearson   Resampling Pearson 

Protein 0.31 -0.10 ± 0.22 -0.05  -0.13 ± 0.21 -0.06  -0.39 ± 0.31 -0.05 

Fat 0.33 -0.22 ± 0.21 -0.15  -0.10 ± 0.21 -0.03  -0.24 ± 0.29 0.05 

Volume 0.36 -0.12 ± 0.20 0.00  -0.08 ± 0.20 0.02  -0.40 ± 0.32 -0.08 

Liveweight 0.35 -0.15 ± 0.17 -0.16  -0.22 ± 0.17 -0.18  a 0.33 

Fertility 0.03 0.09 ± 0.22 0.10  -0.17 ± 0.21 -0.05  -0.04 ± 0.32 -0.07 

SCS 0.12 0.05 ± 0.25 -0.01  0.03 ± 0.25 -0.03  0.10 ± 0.39 0.06 

RSv 0.04 0.03 ± 0.62 -0.01  -0.08 ± 0.41 -0.01  0.17 ± 0.58 0.19 

BCS 0.19 0.02 ± 0.19 0.05   -0.15 ± 0.18 -0.09   0.19 ± 0.27 0.08 
aFor all 100 CMIRt with Liveweight runs, poor CMIRt h2 estimates, and lack of effect solutions for most runs 

 

We report here a weak positive association 

between fertility and AMIR14, but negative 

associations between fertility and AMIR21 or 

CMIR.  Thompson-Crispi et al. (2012) 

generally describe positive associations 

between IR and the Canadian fertility traits 

which indicated that breeding for IR could aid 

fertility, however, we cannot conclude the same 

for NZ dairy cattle. 

 

We also report low to moderate associations 

between liveweight and IR traits; negative for 

AMIR but positive for CMIR. Although the 

cytokines of CMIR are associated with growth 

inhibition during infection (Johnson, 1997), 

their complex role in cellular signalling, 

particularly for metabolic pathways, may mean 

they are involved more generally in increased 

animal growth. 

 

Overall, only weak genetic correlations were 

evident between IR traits and component traits 

of BW in NZ. Selection on IR is unlikely to 

negatively affect existing BW traits, although 

caution would be required given that most 

correlations were unfavourable. Conversely, 

selection on existing BW traits will likely have 

little impact on IR genetics. IR is unlikely to be 

a useful predictor trait for fertility or any other 

trait in NZ’s BW index. 

 

 

Conclusions 
 

Despite limited data, our results indicate that IR 

is a moderately heritable trait, consistent with 

current literature. AMIR is more heritable than 

CMIR, but they have a negative genetic 

correlation with each other, and so CMIR ought 

to also be included in any IR index. Weak 

genetic correlations with routinely evaluated 

traits in NZ means that selection for IR may not 

be detrimental to existing breeding objectives 

and vice versa. However, caution is required as 

most of these correlations, although 

insignificant, were unfavourable. With only 

moderate heritabilities and weak genetic 

correlations with fertility, IR traits are unlikely 

to be of use as predictor traits for fertility in 

dairy cattle. 

 

Measurement of IR is not practical on a 

national scale and therefore not feasible for 

pedigree-based selection, however, it may be 

feasible within a reference population of a 

genomic selection scheme. Further research is 

required to obtain more robust genetic 

parameter estimates, including economic 

analysis to determine whether potential 

reduction in disease-related costs outweighs any 

potential loss due to reduced genetic gain in 

productivity.   Selection  for  IR  may  also  make 
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both quantitative and qualitative gains in 

meeting the expectations of both consumers and 

regulatory agencies with regards to animal 

health and welfare. 

 

 

Acknowledgements 
 

This work was funded by a partnership 

(DRCX1302) between the New Zealand 

Ministry of Business, Innovation and 

Employment and New Zealand dairy farmers 

through DairyNZ Inc., with in-kind support 

from Livestock Improvement Corporation and 

CRV Ambreed. DairyNZ farm and technical 

staff are gratefully acknowledged for their 

efforts in data collection. Input from Dorian 

Garrick was invaluable in considering the 

implications of herd divergence. 

 

 

References 
 

Brown, W.C., Rice-Ficht, A.C. & Estes, D.M. 

1998. Bovine type 1 and type 2 responses. 

Vet. Immunol. Immunopathol. 63, 45-55. 

Fair, T. 2015. The contribution of the maternal 

immune system to the establishment of 

pregnancy in cattle. Front. Imunol. 6:7. 

Garrick, D.J., Taylor, J.F. & Fernando, R.L. 

2009. Deregressing estimated breeding 

values and weighting information for 

genomic regression analyses. Genet. Sel. 

Evol. 41:55. 

Gilmour, A.R., Gogel, B.J., Cullis, B.R., 

Welham, S.J. & Thompson, R. 2015. 

‘ASReml User Guide Release 4.1’, VSN 

International Ltd, UK. 

Harris, B.L., Pryce, J.E., Xu, Z.Z. & 

Montgomerie, W.A. 2005. Fertility breeding 

values in New Zealand, the next generation. 

Interbull Bulletin 33, 47-50. 

Heriazon, A. 2007. Phenotypic and genetic 

parameters of acquired immune responses to  

 

 

 

 

 

 

 

 

 

improve dairy cattle health. PhD Thesis. 

University of Guelph, Guelph, ON, Canada. 

Hernández, A., Quinton, M., Miglior, F. & 

Mallard, B.A. 2006. Genetic parameters of 

dairy cattle immune response traits. Proc. 7th 

Wld. Cong. Genet. Appl. Livest. Prod. 15-18. 

Johnson, R.W. 1997.  Inhibition of growth by 

pro-inflammatory cytokines: an integrated 

view. J. Anim. Sci. 75, 1244-1255. 

R Core Team, 2017. R: A language and 

environment for statistical computing. R 

Foundation for Statistical Computing, 

Vienna, Austria. 

Mallard, B.A., Burnside, E.B., Burton, J.H. & 

Wilkie, B.N. 1983. Variation in serum 

immunoglobulins in Canadian Holstein-

Friesians. J. Dairy Sci. 66, 862-866. 

Meier, S., Fisher, B., Eketone, K., 

McNaughton, L.R., Amer, P.R., Beatson, P., 

Bryant, J.R., Dodds, K., Spelman, R., Roche, 

J.R. & Burke, C.R. 2017. Calf and heifer 

development and the onset of puberty in 

dairy cows with divergent genetic merit for 

fertility. Proc. NZ Soc. Anim. Prod. 77, 205-

210. 

Thompson-Crispi, K.A., Sewalem, A., Miglior, 

F. & Mallard, B.A. 2012. Genetic parameters 

of adaptive immune response traits in 

Canadian Holsteins. J. Dairy Sci. 95, 401-

409. 

Wagter, L.C., Mallard, B.A., Wilkie, B.N., 

Leslie, K.E., Boettcher, P.J. & Dekkers, 

J.C.M. 2000. A quantitative approach to 

classifying Holstein cows based on antibody 

responsiveness and its relationship to 

peripartum mastitis occurrence. J. Dairy Sci. 

83, 488-498. 

Wagter, L.C., Mallard, B.A., Wilkie, B.N., 

Leslie, K.E., Boettcher, P.J. & Dekkers, 

J.C.M. 2003. The relationship between milk 

production and antibody response to 

ovalbumin during the peripartum period. J. 

Dairy Sci. 86, 169-173. 


