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Abstract 
 

The objectives of this study were to investigate whether SNP effects can be accurately estimated when 

the algorithm for proven and young (APY) is used in single-step GBLUP (ssGBLUP), and how close 

indirect predictions, based on SNP effects, are to GEBV from regular ssGBLUP. Tests involved an 

American Angus dataset with 8 million animals in the pedigree. Among those, 80 993 were genotyped. 

Validation animals (15 040) were born from 2013 to 2014. The reduced dataset had genotypes and 

phenotypes up to 2012; the complete dataset had genotypes up to 2014 and was used to obtain the 

benchmark GEBV. Based on the reduced dataset, GEBV were calculated using regular ssGBLUP with 

direct inversion of G (G-1), and APY ssGBLUP (GAPY
-1 ) with 11 000 core animals. The SNP effects were 

calculated based on a) G-1, b) GAPY
-1 , or c) the inverse of the core portion of G (Gcc

-1). Direct genomic 

values (DGV) for validation animals were obtained as the sum of SNP effects weighted by the genotype 

content, and the difference between pedigree and genomic base was added to obtain indirect predictions. 

Correlations between SNP effects obtained with G-1 and GAPY
-1  were > 0.99; the lower correlation (0.93) 

was observed when using Gcore
-1 . Correlations between the benchmark GEBV and DGV from G-1, GAPY

-1 , 

and Gcore
-1  were all 0.99. The average difference between benchmark GEBV and DGV was 113.95, 

indicating a large bias. Indirect predictions that include DGV and the difference between pedigree and 

genomic base were less biased, and therefore, comparable to GEBV. Accurate indirect predictions can 

be obtained when APY ssGBLUP is used. Backsolving genomic predictions to SNP effects may require 

only a group of genotyped animals representing the dimensionality of the genomic information.  
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Introduction 
 

Genomic BLUP (GBLUP) and SNP-BLUP are 

equivalent models (VanRaden, 2008), 

therefore, SNP effects can be derived from 

GEBV and the inverse of the genomic 

relationship matrix (G) in GBLUP and single-

step GBLUP (ssGBLUP) when needed. With 

the increasing number of genotyped animals, 

obtaining SNP effects may have a high 

computational cost. To solve this issue, G-1 

from the algorithm for proven and young (APY) 

can be potentially used.  

 

If SNP effects are available, indirect 

predictions (IP) can be calculated for young 

genotyped animals in between official 

ssGBLUP runs, as an interim evaluation 

(Lourenco  et  al.,   2015).    Indirect   predictions 

 

may also be useful for genotyped animals that 

have incomplete pedigree. Such animals can 

increase bias and reduce reliability of GEBV if 

included in official ssGBLUP evaluations 

(Yutaka Masuda, personal communication), 

given their coefficients in G are not compatible 

to the ones in the pedigree relationship matrix 

(A). 

 

   Lourenco et al. (2015) showed that the 

correlation between IP and GEBV was greater 

than 0.99 for large genotyped populations. 

However, averages were very different, 

meaning IP could not be compared to GEBV. 

The objectives of this study were to fine-tune IP 

to be compatible with GEBV and to investigate 

whether SNP effects can be accurately 

estimated when APY is used in ssGBLUP.  
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Materials and Methods 
 

Data 

 

The dataset was provided by the American 

Angus Association (AAA) and contained 

phenotypes for birth weight (BW), weaning 

weight (WW), and post-weaning gain (PWG). 

Table 1 shows the number of animals with 

records and heritability for all traits. A total of 

80 993 animals were genotyped using the 

BovineSNP50k v2 BeadChip (Illumina Inc., 

San Diego, CA). A total of 38 421 segregating 

SNP remained after quality control. 

 

Table1. Heritability (h2), numbers of records 

and animals with records and genotypes  

Trait h2 
Number 

of records 

Genotyped 

animals with 

records 

BW 0.46 6 177 145 51 844 

WW 0.28 6 877 731 52 970 

PWG 0.27 3 413 415 40 891 

 

A reduced dataset had genotypes and 

phenotypes up to 2012, whereas a complete 

dataset had genotypes up to 2014 and was used 

to obtain the benchmark GEBV. Validation 

animals (N = 15 040) were born in 2013 and 

2014, and had genotypes excluded from the 

reduced dataset. Based on the reduced dataset, 

GEBV were calculated and backsolved to SNP 

effects. Details about the three-trait model used 

in this study are provided in Lourenco et al. 

(2015).  

 

 

SNP effects from ssGBLUP with APY 

 

The SNP effects were calculated based on:  

a) G-1, using the formula derived by Wang 

et al. (2012):  �̂� = 𝝀𝑫 𝒁′G−1û; where �̂� is a 

vector of SNP effects, 𝝀 is the ratio of SNP to 

additive genetic variance, 𝑫 is a diagonal matrix 

of weights for SNP (identity), 𝒁 is a matrix of 

SNP content, û is GEBV from regular 

ssGBLUP. 

b) G-1 computed with APY (GAPY
-1 ): �̂� =

𝝀𝑫 𝒁′GAPY
-1 �̂�APY; where �̂�APY is GEBV 

obtained with APY ssGBLUP. A total of 11 000 

core animals were used. Core definition was 

either high reliability (H) or randomly chosen 

(R) animals. In APY, the inverse of G is 

constructed as (Misztal, 2016): 

 

G-1= [Gcc
-1 0

0 0
] + [-Gcc

-1Gcn

I
] Mnn

-1 [-GncGcc
-1 I] 

 

where c represents the core animals and n the 

non-core. 

c) G-1 only for the 11 000 core animals 

(Gcc
-1), using either H or R core: �̂� =

𝝀𝑫 𝒁′Gcc
-1�̂�cc; where �̂�cc is GEBV for core 

animals obtained with APY ssGBLUP. 

 

Indirect predictions for validation animals 

were obtained as the sum of SNP effects 

weighted by the genotype content. Correlations 

between the benchmark scenario (G-1) and the 

other scenarios were calculated for SNP effects 

and IP.  

 

 

Adjustments for indirect predictions 

 

Having IP in the same scale of GEBV enables 

the use of IP as interim evaluation and, 

therefore, to compare young or non-qualified 

(incomplete pedigree) animals with animals 

that are part of the official evaluation. Although 

correlation between a benchmark GEBV and IP 

for young animals can be as high as 0.99 

(Lourenco et al., 2015), E(�̂�) =0 and E(𝑰�̂�)≈0. 

Preliminary tests showed �̅̂� for PWG for young 

animals was 99.92, whereas 𝑰𝑷̅̅̅̅  was almost 0. In 

this case, GEBV and IP are not comparable. 

 

Once SNP effects are available, the 

expectation of the conditional distribution of 

GEBV (�̂�) and SNP effects (�̂�) in the GBLUP 

context is: 

 
 𝑬(�̂�|�̂�) = 

𝑬(�̂�) + 𝒁
𝟏

𝟐 ∑ 𝒑(𝟏 − 𝒑)
 (𝑰

𝟏

𝟐 ∑ 𝒑(𝟏 − 𝒑)
)

−𝟏

(�̂� − 𝑬(�̂�)) 

 

with 𝑬(�̂�) = 𝟎; then, 

 

𝑬(�̂�|�̂�) = 𝒁
𝟏

𝟐 ∑ 𝒑(𝟏 − 𝒑)
 (𝑰

𝟏

𝟐 ∑ 𝒑(𝟏 − 𝒑)
)

−𝟏

(�̂� − 𝟎) 

 

Therefore, 

 

𝐸(�̂�|�̂�) = 𝐙�̂� 
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In ssGBLUP, ungenotyped and genotyped 

animals are combined through the realized 

relationship matrix (H): 

 

 
 

where the subscript 1 represents ungenotyped 

and 2 genotyped animals. 

 

Usually, G is centered based on current 

allele frequencies, fixing the average breeding 

value for genotyped animals to 0 (VanRaden, 

2008). However, genotyped animals represent 

the most recent and selected population, and 

average breeding values should be different 

from 0. When ssGBLUP is used, there is a 

difference between pedigree and genomic base, 

because base animals in A are the founders of 

the pedigree and base animals in G are the 

genotyped animals. This difference can be 

modeled as a mean for the genotyped animals 

(Vitezica et al., 2011):  

 

𝒑(𝒖𝟐) = 𝑵(𝟏𝝁, 𝑮) 

 

where 𝒖𝟐 is breeding value for genotyped 

animals; 

 

𝝁 : 𝑮 = 𝟏𝟏′𝒂 + 𝒃𝑮∗ 

 

where  𝒂 =  
1

n2
( ∑ ∑ A22 - ∑ ∑ 𝑮) jiji , 𝑮∗ is the 

genomic relationship matrix without 

adjustments, and 𝒃 = 𝟏 −
𝟏

𝟐
𝒂; 𝑽𝒂𝒓(𝝁) = 𝒂𝝈𝒖

𝟐 . 

 

This difference between pedigree and 

genomic base is taken into account when GEBV 

are estimated, but not when IP are obtained 

based on SNP effects as 𝒁â.  

 

Three approaches were tested to account for 

the difference between pedigree and genomic 

base in IP: 

a) Formulas derived in Legarra (2017): 

 

 �̂�𝒊𝒑= 𝒁𝒗â + �̂� +  �̂�𝒑, with 

 

𝑬(�̂�|�̂�) = a α 1’ G−1�̂�, and 

 

 �̂�𝒑 =  𝟎. 𝟓(�̂�𝒑𝒂𝒓𝒆𝒏𝒕𝒔,𝒔𝒊𝒓𝒆 +  �̂�𝒑𝒂𝒓𝒆𝒏𝒕𝒔,𝒅𝒂𝒎) 

 

𝑬(�̂�𝒑𝒂𝒓𝒆𝒏𝒕𝒔|�̂�) = 𝑨𝟐𝟐 (1-α) G−1�̂� 

 

where  �̂�𝒊𝒑 is the estimated indirect prediction; 

𝒁𝒗 is the matrix of SNP content for validation 

animals; �̂�𝒑 is the average of 

 �̂�𝒑𝒂𝒓𝒆𝒏𝒕𝒔; �̂�𝒑𝒂𝒓𝒆𝒏𝒕𝒔 is the contribution of 

parents’ breeding values and account for the 

fact that a small portion (1-α) of 𝑨𝟐𝟐 was 

blended to G to avoid singularity problems; 1-α 

is 0.05 and α is 0.95. 

b) Linear regression with double fitting: 

intercept (𝑏0) and regression coefficient (𝑏1) of 

GEBV on 𝐙�̂� were estimated for animals in the 

reduced data. 

 

GEBV𝑟𝑒𝑑𝑢𝑐𝑒𝑑 = 𝑏0 + 𝑏1𝐙�̂�𝑟𝑒𝑑𝑢𝑐𝑒𝑑 
 

The coefficients were then applied to the 

validation animals, so the base difference is 

adjusted by 𝑏0: 

 

 �̂�𝑖𝑝=  𝑏0 + 𝑏1𝐙𝒗�̂� 

 

c) Average of GEBV: a simple average of 

GEBV for genotyped animals in the reduced 

dataset was added to 𝐙𝒗�̂�: 

 

 �̂�𝑖𝑝=  �̅̂�𝑟𝑒𝑑𝑢𝑐𝑒𝑑 + 𝐙𝒗�̂� 

 

The calculation of SNP effects in this study 

accounted for blending and tuning; therefore, 

the formula from Wang et al. (2012) was 

multiplied by two extra components (α and b).  

 

The difference between GEBV from the 

complete data and  �̂�𝑖𝑝, for validation animals, 

was used as a measure of bias. Accuracy was 

calculated as the correlation between GEBV 

and  �̂�𝑖𝑝. In addition, the regression coefficient 

of GEBV on  �̂�𝑖𝑝 was used as a measure of 

inflation.  

 

 

Results & Discussion 

 
Comparisons between the benchmark scenario 

using G-1 and alternative approaches for 

estimating SNP effects and IP (e.g., 𝐙𝒗�̂�) are 

shown  in  Table 1.   Correlations  between   SNP 
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effects from G-1 and GAPY
-1  were greater than 

0.99, indicating SNP effects can be accurately 

backsolved when APY ssGBLUP is used. 

Several studies have shown GEBV from APY 

ssGBLUP are accurate (Fragomeni et al., 2015 

and Lourenco et al., 2015); therefore, given the 

theory of APY is based on the limited 

dimensionality of genomic information 

(Misztal , 2016), SNP effects and IP obtained 

from regular or APY ssGBLUP are also 

expected to be highly correlated. 

 

Table 1. Correlations between SNP effects and 

IP calculated based on G-1 and GAPY
-1  or Gcc

-1  

with two definitions of core animals.  

 Scenario �̂� 𝐙𝒗�̂�1 

GAPY_H
-1  0.999 0.998 

GAPY_R
-1  0.998 0.997 

Gcc_H
-1  0.930 0.989 

Gcc_R
-1  0.900 0.988 

1Indirect predictions as 𝐙â for validation animals; H 

core is composed by high reliability animals; R core 

is composed by randomly picked animals. 

  

When SNP effects were backsolved based 

on G-1 and GEBV for the core subset (Gcc_H
-1  and 

Gcc_R
-1 ), correlations were lower than expected, 

especially for the random core. However, 

differences cancelled out when IP were 

obtained as linear functions of SNP effects, 

given the correlations approached 0.99 in all 

scenarios. 

 

Because G is a centered matrix, �̂� and 𝐙𝒗�̂� 

approach 0, making comparisons between 

official GEBV and IP difficult. In fact, average 

𝐙𝒗�̂� was 2.38 and average GEBV was 116.33 

for all validation animals.   Differences between 

the benchmark GEBV and alternative 

approaches to balance pedigree and genomic 

base in IP ( �̂�𝑖𝑝) are shown in Figure 1. 

 

 
Figure 1. Difference between benchmark 

GEBV and  �̂�𝑖𝑝 (measure of bias) for all 

validation animals (blue) or validation animals 

with parents known (green). 

 

The difference between IP, simply 

calculated as 𝐙𝒗�̂�, and GEBV was 113.95 for 

all validation animals and 115.03 for the ones 

with known parents, confirming a large bias for 

IP as a linear function of SNP content and effect 

without any adjustments. When the formulas 

from Legarra (2017), linear regression with 

double fitting, or average GEBV were used to 

obtain �̂�𝑖𝑝, bias was greatly reduced towards 0 

for both groups of animals.   

 

Correlations between GEBV and  �̂�𝑖𝑝 for all 

scenarios, including 𝐙𝒗�̂� approached 0.98 for 

all validation animals and 0.99 for the ones with 

known parents. In fact, correlations are not 

expected to change considerably when a 

constant or small values (e.g.,  �̂�𝑝) are added to 

𝐙𝒗�̂�. 

 

Regression coefficients of GEBV on  �̂�𝑖𝑝 are 

shown in Figure 2. Indirect predictions based on 

formulas from Legarra (2017) were slightly 

inflated compared to adding average GEBV to 

𝐙𝒗�̂�. Conversely, the double fitting approach 

was deflated.   
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Figure 2. Regression coefficients of GEBV on 

 �̂�𝑖𝑝 (measure of inflation) for all validation 

animals (blue) or validation animals with 

parents known (green). 

 

Although in GBLUP the 𝐸(�̂�) is zero, in 

ssGBLUP this expectation is modeled as the 

difference in population base: 

 
𝐸(�̂�|�̂�) = 

�̂� + 𝐙
1

2 ∑ 𝑝(1 − 𝑝)
 (𝐈

1

2 ∑ 𝑝(1 − 𝑝)
)

−𝟏

(�̂� − 0) 

 

Therefore, 
 

𝐸(�̂�|�̂�) = �̂� + 𝐙�̂� 
 

Based on the difference between 

benchmark GEBV and �̂�𝑖𝑝, correlations, and 

regression coefficients, adding the average 

GEBV is a reasonable approach to adjust IP for 

the dissimilarity between pedigree and genomic 

base (�̂� = 𝐺𝐸𝐵𝑉̅̅ ̅̅ ̅̅ ̅̅ ). After this adjustment, IP 

becomes compatible to GEBV and animals not 

included in the official evaluation can be 

compared to the ones that participated in the 

evaluation. 

 

 

Conclusions 

 

Indirect predictions that include the linear 

function of SNP content and effect (𝐙𝒗�̂�) 

summed to the average of GEBV, as the 

difference between pedigree and genomic 

base, are less biased, therefore, comparable 

to GEBV.  Accurate indirect predictions can 

 

 

 

be obtained when APY ssGBLUP is used. 

Backsolving genomic predictions to SNP 

effects may require only a group of 

genotyped animals representing the 

dimensionality of the genomic information. 
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