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Abstract 

 
Several aspects of genomic prediction require use of allele frequencies that ideally reflect the base 

generation of the available pedigree. This includes computation of model-based reliabilities of direct 

genomic values (DGV) in the context of multi-step genomic evaluations, computation of genomic 

relationships to be used in single-step GBLUP, and computation of relationships among metafounders. 

In many cases, the allele frequencies computed from the currently genotyped population are used 

instead, motivated by the observation that computation of base generation allele frequencies is time 

consuming. Our aim was to compare the efficiency and accuracy of different methods to compute base 

generation allele frequencies. The first method employed the gene content method, by running a BLUP 

on the SNP genotypes and considering a heritability of 0.99. Either a univariate BLUP run for each SNP, 

or a multiple-trait BLUP run for several SNPs was performed, considering zero genetic correlations 

among the SNPs. The second method employed a general least squares estimator that is equivalent to 

the first method, albeit that it does not consider a residual variance. First analyses on simulated data 

without selection, missing genotypes or genotype errors in the data showed that the second method is 

superior in both accuracy and efficiency, but only if the inverse of the A matrix was computed using 

imputation on the fly. The implementation of the second method required less than two minutes to 

compute base generation allele frequencies for 1 670 SNPs based on 100 078 genotyped animals, and a 

total pedigree of 325 266 animals. Subsequent analyses with datasets simulating selection, missing 

genotypes and genotyping errors, that are closer to data used in practice, supported the results that the 

second method is more efficient and accurate. 
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Introduction 

 

The allele frequencies of the base generation in 

the pedigree are required for several aspects of 

genomic prediction. This includes computation 

of model-based reliabilities of direct genomic 

values (DGV) in the context of multi-step 

genomic evaluations, computation of genomic 

relationships to be used in single-step GBLUP, 

and computation of relationships among 

metafounders. 

 

There is a need to find a computationally 

efficient and accurate method of estimating 

base generation allele frequencies rather than 

using the allele frequencies computed from the 

currently genotyped population. Two methods 

have been proposed to achieve this. The first 

method was a general least squares estimator 

(GLS) for each SNP (McPeek et al., 2004; 

Garcia-Baccino et al., 2017). The second 

method was best linear unbiased predictions 

(BLUP) for each SNP with a genetic correlation 

of zero and a heritability of 0.99 (Gengler et al., 

2007). The aim of this study was to test these 

methods and to determine which would be the 

most efficient and accurate. 

 

 

Materials and Methods 

 

Data Simulation 

 

Datasets for a typical dairy population were 

simulated using the software QMSim 

(Sargolzaei and Schenkel, 2009). Each dataset 

had a historical population with 100 000 

animals decreasing to 500 over 2 000 

generations. Following the slow decline in 

population size, was a rapid increase to 25 000 

animals over 10 generations to expand the 

population, while maintaining linkage 

disequilibrium.  

 

A founder population was randomly selected 

from the last historical generation. The founder 

population was the base generation that the 

calculations for allele frequency were  
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attempted. The founder population included 30 

males and 24 970 females. The population 

structure of males to females was maintained 

across the following generations, which had a 

consistent effective population size of 120. 

 

Four datasets were simulated using the 

above historic and founder population 

structures. All datasets had 12 generations 

proceeding the base generation. Generations 9 

to 12 were fully genotyped. The pedigree 

included 325 266 animals with 100 078 animals 

genotyped. Genotyping included 1 670 SNPs, 

randomly positioned across the genome with a 

mutation rate of 2.5e-5. QMSim provided 

frequencies of markers for each generation but 

only the founder generation was necessary, 

which were used to determine the accuracy of 

calculated allele frequencies.  

 

The first dataset (Base Simulation) was used 

to determine computational efficiency. It had no 

selection, random mating and random culling. 

The genome consisted of 10 chromosomes, 

with 167 SNPs randomly positioned on each 

chromosome.  

 

The second dataset (Simulation with 

selection) had selection and culling based on 

EBVs, with random matings and only a single 

chromosome, thereby decreasing variation.  

 

The third dataset (Pedigree Errors) was a 

direct copy of Simulation with selection, but 

25% of sires in generations 1 to 5 were replaced 

with an unknown sire. This was to simulate a 

scenario where animals erroneously may be 

considered as founder animals, only because 

they have unknown ancestry.  

 

The fourth dataset (Genotyping Errors) was 

a replicate of Simulation with selection but with 

a random genotyping error rate of 0.02. 

 

 

Calculating allele frequencies 

 

To determine which method of calculating the 

base generation allele frequency was most 

efficient, the Base Simulation was used. The 

other three datasets were used to determine the 

effects that selection and variation, pedigree 

errors, and genotyping errors have on efficiency 

and accuracy of the tested methods.  

Observed allele frequencies of genotyped 

animals 

 

Two implementations of computing genotype 

frequencies were made. First, observed allele 

frequencies were calculated using all genotyped 

animals. Second, observed allele frequencies 

were calculated only using animals in the first 

genotyped generation (most closely related 

genotyped generation to the base generation). 

Both implementations were done using Python 

version 3.6.3. 

 

 

Best Linear Unbiased Prediction 

 

Using MiXBLUP (Ten Napel et al., 2017), a 

series of BLUPs were run on the SNP genotypes 

(McPeek et al., 2004; Gengler et al., 2007). For 

each SNP the heritability was set at 0.99, with a 

genetic correlation between SNPs of zero. The 

series of SNPs included in BLUP runs ranged 

between a single SNP up to 60 SNPs. Each 

model had a convergence criteria of 1.0*10-12. 

For 1 670 SNPs, 27 runs of 60 SNPs plus an 

additional run of 50 SNPs were run in parallel. 

The base generation allele frequency was 

estimated for each SNP as �̂�/2  where �̂� was the 

estimate of the general mean of the model. 

 

 

General least squares estimator 

 

The equivalent GLS estimator to BLUP 

(McPeek et al., 2004; Garcia-Baccino et al., 

2017) for the i-th SNP was: 

 

�̂�𝑖 = (𝟏′𝐀𝟐𝟐
−𝟏𝟏)−𝟏𝟏′𝐀𝟐𝟐

−𝟏𝐙𝑖 
 

where 1 is a vector of ones, 𝐀𝟐𝟐
−𝟏 is the inverse 

pedigree relationship matrix of genotyped 

animals and Z a matrix of genotypes coded as 

0, 1, 2. Two approaches implemented this 

method differently.  

 

The first implementation was similar to that 

of Strandén et al. (2017) which used the 

approach of McPeek et al. (2004), to estimate 

base generation allele frequencies. This was 

done by writing a Fortran program (allelefreq), 

whereby 𝐀𝟐𝟐
−𝟏𝟏 is computed as a multiplication 

of sparse matrices by a vector:  
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𝐀𝟐𝟐
−𝟏𝟏 = (𝐀𝟐𝟐 − 𝐀𝟐𝟏(𝐀𝟏𝟏)

−𝟏
𝐀𝟏𝟐)𝟏 

 

where the product (𝐀𝟏𝟏)
−𝟏
𝐀𝟏𝟐𝟏 = (𝐀𝟏𝟏)

−𝟏
𝐯  

was solved as 𝐀𝟏𝟏𝐱 = 𝐯 using Intel MKL-

PARDISO  (Schenk et al., 2001). 

 

Due to minor alleles close to being fixed 

with frequencies <0.001, there were instances 

where the estimated allele frequency of the base 

generation were outside of the parameter space. 

This was addressed by swapping the allele 

coding and using only estimates within the 

parameter space from the two runs of allelefreq.  

 

The second implementation calculates the 

direct inverse of A22, which was computed and 

written using Calc_grm (Calus and Vandenplas, 

2016). Using the same equivalent GLS 

estimator as allelefreq the base generation allele 

frequency was estimated. This was done to 

determine if it yielded the same results as the 

first method, and to evaluate the computational 

advantage of the first method.  

 

 

Statistical Analysis 

 

Computational efficiency 

 

For each method the required processing time, 

observed wall clock time and memory was 

analysed. The reported processing time and 

Random Access Memory (RAM) was the 

maximum allocation required for the analysis as 

recorded by the computer. The wall clock time, 

was the observed time seen for the process to 

start and end, for multiple CPUs per task or 

running tasks in parallel. As such, the time 

required for frequency of all genotyped animals 

or the first genotyped generation included; 

reading the pedigree and genotype data for 

relevant generations, making the frequency 

calculation and writing the results.  

 

The analysis of MiXBLUP has been 

reported for both the full processing time 

including the running of all 28 MiXBLUP runs, 

plus the time required to read the MiXBLUP 

results, calculate base generation allele 

frequency and write the final results. The 

MiXBLUP runs included 60 SNPs as the fewest 

number of required runs but single runs of 1 to 

60 SNPs (5 SNP increments) were used to 

determine the computationally most efficient 

number of SNPs to be included. Increasing the 

number of correlated SNPs reduced reading the 

pedigree to once per iteration.   

 

The time and memory reported for two 

threads of allelefreq, included both runs with 

and without swapping the allele coding. Which 

included; reading the pedigree, inbreeding 

coefficients and genotyped data, computing the 

base generation allele frequencies and writing 

the results. 

 

Where Calc_grm was used time and memory 

reported includes the computation of the 𝑨22
−1 

matrix, reading the corresponding results, 

reading the pedigree and genotype data, 

computation of the base generation allele 

frequency and writing the results.  

 

The computational efficiency of each 

method was compared to a number of data 

structures and errors that occur in more realist 

scenarios.  

 

All computations were run on a high 

performance cluster (HPC). The HPC was 

designed  with 48 nodes: 16 cores, 64 GB 

memory, Intel Xeon, and  2.2 GHz. For the 

computation of 𝐀22
−1 with Calc_grm, one of two 

fat nodes with: 64 cores, 1 TB memory, AMD 

Opteron, and 2.3 GHz was used, with 16 

threads. The use of the HPC cluster has been 

made possible by CAT-AgroFood (Shared 

Research Facilities Wageningen UR). 

 

 

Accuracy of estimates 

 

Known allele frequencies of the base generation 

provided by QMSim during data simulation 

were used to compare the accuracy of each 

method. To make the comparison between 

methods, the known frequency from QMSim 

and estimated allele frequency correlations 

were calculated using R version 3.4.0 (R Core 

Team. 2017). The accuracy of estimates for 

each method was compared to a number of 

more realistic data structures and errors.  
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Results and Discussion 
 

Computational efficiency 

 

It was shown that estimating base generation 

allele frequency can be estimated efficiently. 

The most computationally efficient method for 

calculating base generation allele frequency 

was with allelefreq, using a sparse computation 

of 𝐀𝟐𝟐
−𝟏𝟏. The full processing time required was 

just 1 minute and 28 seconds, and required 2.6 

GB RAM, which was significantly lower 

compared to the other methods reported in 

Table 1. If only one of the allelefreq runs was 

used (without allele coding swapped) the time 

was reduced to 45 seconds. 

 

Table 1. Computational requirements to 

complete the full process of each method for the 

Base Simulation. 

Method Process time 
Wall clock 

time 

Random 

Access 

Memory 

All animals 

genotyped 
0-00:03:44 0-00:03:44 7.8 GB 

First animals  

genotyped 
0-00:01:19 0-00:01:19 1.6 GB 

    

29 MiXBLUPs 0-13:42:17 0-00:34:57 49.0 GB 

1 MiXBLUP 0-00:29:50 0-00:29:50 1.8 GB 

    

Allelefreq 0-00:01:28 0-00:00:52 2.6 GB 

Calc_grm 50-20:12:16 1-05:42:00 165.9 GB 

 

The program allelefreq was required to be 

run twice for each data simulation whereby the 

second run swaps the allele coding. The 

required time could have been greatly reduced 

if either the coding did not requiring swapping, 

or if the original and swapped run were run 

together so that the genotypes are only read 

once which is the most demanding process. 

  

For the GLS method with full 𝐀𝟐𝟐
−𝟏 computed 

using   Calc_grm,   writing  the  full  matrix  with 

 

 

 

 

 

and then reading the matrix, was the most 

demanding process. The full process required 

over 50 days of processing time, and required 

over one day of actual observed wall clock time. 

This was the same reason for why Strandén et 

al. (2017) proposed the previous method with 

the imputed matrix. The efficiency could have 

been greatly improved if the GLS estimation 

was done within Calc_grm, to avoid writing the 

matrix to file. Due to the time and memory 

inefficiency this method was not recommended 

unless the 𝐀𝟐𝟐
−𝟏 was going to be calculated for 

other processes. 

 

The results for computational efficiency for 

the methods based on GLS were presented for 

the Base Simulation. When the Simulations 

with selection, Pedigree errors, and Genotyping 

errors were used, the required processing time 

and memory was not significantly different. The 

reason there was no difference is because the 

majority of the computational requirements is 

reading the data not the calculation of allele 

frequency. 

 

Running BLUPs for all 1 670 SNPs was 

inefficient in total processing time at over 13 

hours, however the observed wall clock time 

when run in parallel was reduced to under 35 

minutes. For the Simulation with selection, the 

required processing time increased to over 28 

hours, with an observed wall clock time of over 

one hour. This was due to convergence issues 

with each MiXBLUP run requiring on average 

330 iterations for the Base Simulations and 840 

for the Simulation with selection. The results 

presented for the BLUP analysis used 

MiXBLUP, where 60 SNPs were run 

simultaneously, and genetic correlations set to 

zero. The 60 SNPs were used for convenience.  

 

The most demanding process for the BLUP 

method was for solving the mixed model 

equations. Computationally the most time 

efficient number of simultaneously included 

SNPs was between 10 and 20 SNPs (Figure 1). 

The efficiency could have been improved by 

reducing the number of correlated SNPs.  
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Figure 1.  Average time per SNP for MiXBLUP 

to start and end, solving mixed model equations, 

with the Base Simulation dataset. 

 

Using the allele frequency of the first fully 

genotyped generation to estimate the allele 

frequency, would have been the most 

computational efficient method. It required just 

79 seconds and 1.6 GB of processing time and 

RAM to complete. It could have been further 

optimized by using a compiled language rather 

than Python. It however, was considered the 

least appropriate method as the accuracy of the 

estimates make it unsuitable as a method of 

estimating base generation allele frequency. 

 

It should also be noted that estimating the 

base generation allele frequency does not need 

to be performed before each routine evaluation. 

Assuming the number of genotyped animals is 

large and representative enough. Similar to how 

variance components are not estimated for 

every evaluation, but are updated as necessary. 

 

 

Accuracy of computation 

 

The correlation between known allele 

frequency of the base generation and the 

estimated allele frequency for each method 

have been presented in Table 2. The 

correlations were used to gauge the accuracy of 

the estimated allele frequency. 

 

 

 

 

Table 2. Correlation (± s.e.) between the known 

base generation allele frequency and estimated 

allele frequency. 

 

Using the allele frequency of the most recent 

generation was a good estimate for the 

frequency of the base generation with a 

correlation of 0.99 ± 0.01 for the Base 

Simulation. For all the following methods the 

Base Simulation had a very high correlation of 

0.99 ± 0.01, due to the fact that there was a 

limited difference between the base generation 

and later generations. 

 

The issue was that once selection was 

introduced the correlation between the base 

generation allele frequency and the first 

genotyped generation decreased to 0.88 ± 0.01. 

The Simulation with selection and the dataset 

with Pedigree errors had identical genotypes 

and therefore the correlation between allele 

frequencies of the base and first genotyped 

generation were also 0.88 ± 0.01. When the 

Genotyping errors dataset was used the 

correlation was unaffected at 0.88 ± 0.01. 

Future analysis should test if larger proportions 

of genotyping errors reduces the accuracy of 

these estimates and should also be considered 

across the different methods. As other methods 

were more accurate and not much more time 

consuming, using the first genotyped generation 

to estimate the allele frequency of the base 

generation was not recommended. Further 

analysis of accuracy of estimates, of the base 

generation allele frequency focused on the 

Simulation with selection. 

 

  

Method 
Base 

Simulation 

Simulation with 

selection 

All  animals 

genotyped  
0.99 ± 0.01 0.87 ± 0.01 

First  animals 

genotyped  
0.99 ± 0.01 0.88 ± 0.01 

   

MiXBLUP 0.99 ± 0.01 0.96 ± 0.01 

   

Allelefreq 0.99 ± 0.01 0.97 ± 0.01 

Calc_grm 0.99 ± 0.01 0.97 ± 0.01 
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The correlation between the known base 

generation allele frequencies and estimates 

using MiXBLUP increased to 0.96 ± 0.01 for 

the Simulation with selection. This supported 

Gengler et al. (2008), that the accuracy of allele 

frequencies estimated by this method are 

reliable. There were however four outlier SNPs 

that had estimated allele frequencies outside of 

the parameter space by <0.01. These four SNPs 

had low minor allele frequencies (<0.001) in the 

base generation. 

 

The most accurate estimates for base 

generation allele frequency was with the 

equivalent GLS estimator. The GLS method 

implemented in allelefreq gave a high 

correlation between the base generation allele 

frequency and the estimated frequency, of 0.97 

± 0.01 when ignoring estimates outside the 

parameter space.  

 

There was the issue of 206 SNPs originally 

outside of the parameter space for the Base 

simulation, and when the allele coding was 

swapped 190 SNPs were outside the parameter 

space. If one of those allele coding estimates 

were within the parameter space and used, only 

three estimates remained outside the space (The 

same three SNPs observed outside parameter 

space with MiXBLUP). Only for those SNPs, 

the estimated allele frequencies deviated from 

the estimates obtained with the full A matrix 

from Calc_grm, which approach always 

returned estimates within the parameter space. 

It was assumed that these estimates would not 

be an issue as the known allele frequencies 

could be considered fixed at >0.99 in both the 

base generation and last generation. This has 

also been observed by Makgahlela et al. (2013), 

which suggested these estimates are due to the 

simplified model of Gengler et al. (2007), in the 

sense that a binomial model maybe more 

appropriate for SNPs with (very) low minor 

allele frequency, and does not impose 

restrictions on the parameter space. 

 

 

Conclusions 
 

Several processes for genomic prediction 

require base generation allele frequencies. A 

computationally efficient method was needed. 

This study compared time, memory use, and 

accuracy for a number of methods and different 

implementations.  It was recommended that the 

generalized least squares method, with an 

pedigree relationship matrix computed using 

sparse matrices, be used to estimate base 

generation allele frequencies. If very high 

accuracies for base generation allele 

frequencies is needed a combination of the 

methods could be considered but this method 

should be suitably efficient and accurate for 

genomic prediction aspects.   

 

 

Acknowledgements 
 

This study was financially supported by the 

Dutch Ministry of Economic Affairs (TKI Agri 

& Food project 16022) and the Breed4Food 

partners Cobb Europe, CRV, Hendrix Genetics 

and Topigs Norsvin. The use of the HPC cluster 

has been made possible by CAT-AgroFood 

(Shared Research Facilities Wageningen UR). 

 

 

References 
 

Calus, M.P.L. & Vandenplas J. 2016. Calc_grm 

– a program to compute pedigree, genomic, 

and combined relationship matrices. ABGC, 

Wageningen UR Livestock Research. 

Garcia-Baccino, C.A., Legarra, A., Christensen, 

O.F., Misztal, I., Pocrnic, I., Vitezica, Z.G. 

& Cantet, R.J. 2017. Metafounders are 

related to Fst fixation indices and reduce bias 

in single-step genomic evaluations. Genetics 

Selection Evolution. 49, 34. 

Gengler, N., Mayeres. P. & Szydlowski, M. 

2007. A simple method to approximate gene 

content in large pedigree populations: 

application to the myostatin gene in dual-

purpose Belgian Blue cattle. Animal 1, 21-

28. 

Gengler, N., Abras, S., Verkenne, C., 

Vanderick, S., Szydlowski, M. & Renaville, 

R. 2008. Accuracy of prediction of gene 

content in large animal populations and its 

use for candidate gene detection and genetic 

evaluation. Journal of Dairy Science 91, 

1652-1659. 

Makgahlela, M., Strandén, I., Nielsen, U., 

Sillanpää, M. & Mäntysaari, E. 2013. The 

estimation of genomic relationships using 

breedwise allele frequencies among animals 

in multibreed populations. Journal of Dairy 

Science 96, 5364-75. 



INTERBULL BULLETIN NO. 53. Auckland, New Zealand, February 10 - 12, 2018 

 

70 

 

McPeek, M.S., Wu, X. & Ober, C. 2004. Best 

Linear Unbiased Allele‐Frequency 

Estimation in Complex Pedigrees. 

Biometrics 60, 359-367. 

R Core Team. 2017. R: A language and 

environment for statistical computing. R 

Foundation for Statistical Computing, 

Vienna, Austria. 

Sargolzaei, M. & Schenkel, F.S. 2009. 

QMSim: a large-scale genome simulator 

for livestock. Bioinformatics 25, 680-681. 

Schenk,  O.,   Gärtner,  K.,    Fichtner,  W.   & 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stricker, A. 2001. PARDISO: a high-

performance serial and parallel sparse 

linear solver in semiconductor device 

simulation. Future Generation Computer 

Systems 18, 69-78. 

Ten Napel, J., Vandenplas, J., Lidauer, M., 

Stranden, I., Taskinen, M., Mäntysaari, V, 

Calus, M.P.L. & Veerkamp, R.F. 2017. 

MiXBLUP, user-friendly software for 

large genetic evaluation systems – Manual 

V2.1-2017-08, Wageningen, the 

Netherlands. 


