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Abstract 

 
The huge increases in dairy cattle milk yield in advanced economies over the past century is a powerful 

example of the role of breeding in improving livestock productivity. However, breeding practices have had 

poor efficacy and penetrance in smallholder farming systems in regions such as East Africa.  Therefore, to 

meet the continually growing expectations of a more discerning global population for a more varied and 

nutritious diet, effective dairy cattle breeding programmes need to reach smallholder dairy producers. In 

advanced economies, large data sets from commercial farms with modest to large herd sizes (e.g. 20 to several 

thousand cows) and widespread use of AI have provided sufficient animals within each herd and sufficient 

genetic connectedness between herds. This has enabled the genetic and environmental components of an 

individual animal’s phenotype to be accurately separated, thus providing accurate genetic evaluations with 

pedigree information. Typically, herds are neither large nor have high genetic connectedness in smallholder 

farming systems, such as in East Africa, which limits genetic evaluation with pedigree information. Genomic 

information keeps track of shared haplotypes rather than animals. This information could capture and 

strengthen connectedness between herds and through this may enable genetic evaluations based on phenotypes 

recorded on smallholder dairy farms. The objective of this study was to use simulation to quantify the power 

of genomic information to enable genetic evaluation under such conditions. The results show; (i) GBLUP 

produced higher accuracies than PBLUP at all population sizes and herd sizes, (ii) Models with herd fitted as 

a random effect produced equal or higher accuracies than the model with herd fitted as a fixed effect across all 

herd size scenarios, (iii) At low levels of genetic connectedness, with four offspring per sire and one to two 

animals per herd, GBLUP produced EBV accuracies greater than 0.5. Generally, a decrease in the number of 

sires mated showed consistently higher accuracies compared to when more sires were used. These results 

suggest that effective breeding programs that use data recorded on smallholder dairy farms in East Africa are 

possible. 
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Introduction 

 
The huge increases in dairy cattle milk yield in 

advanced economies over the past century is a 

powerful example of the role of breeding in 

improving livestock productivity. For example, in 

the US dairy industry, production of milk per cow 

doubled from an average of 6,000kg to 12,000kg 

between 1955 and 2005. Approximately 50% of 

this improvement can be attributed to breeding 

(CDCB 2017). However, breeding practices have 

had poor efficacy and penetrance in smallholder 

farming systems in regions such as East Africa. 

Recent estimates from Kenyan smallholder farms 

suggest that average productivity per cow is as low 

as 3 litres of milk per day. Despite this, the 

smallholder dairy economy is very important, as 

farms with an average of five cows or less account 

for greater than 70% of the milk produced (East 

African Dairy Development Program 2012; 

Abdulsamad & Gereffi 2016). Therefore, to meet 

the continually growing expectations of a more 

discerning global population for a more varied and 

nutritious diet, the improvements in dairy cattle 

breeding programmes need to reach smallholder 

dairy producers. 

Genetic evaluations are a central 

component of genetic improvement programs. 

Statistical models for genetic evaluation that use 
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pedigree information to model the relatedness 

between individuals have been very successful in 

advanced economies. Large data sets from 

commercial farms with modest to large herd sizes 

(e.g. 20 to several thousand cows) and widespread 

use of AI (Wiggans et al. 1988) have provided 

sufficient animals within each herd and sufficient 

genetic connectedness between herds. This has 

enabled the genetic and environmental components 

of an individual animal’s phenotype to be 

accurately separated (Henderson 1953), thus 

providing accurate genetic evaluations.  

In contrast, smallholder dairy producers in 

Kenya, have small herd sizes (e.g. <five cows) and 

artificial insemination is not widely used (Muia et 

al. 2011; Mutavi et al. 2016; Ojango et al. 2016). 

This has been a barrier to effective genetic 

evaluations using pedigree best linear unbiased 

predictions (PBLUP).  

The decreasing costs of SNP chip 

technologies have resulted in the recent 

accessibility of genotype information to farmers in 

East Africa. This in combination with 

developments in the statistical methodologies of 

genomic selection (Meuwissen et al. 2001) has, for 

the first time, meant genetic evaluations are a 

realistic goal in East Africa. The computation of a 

genomic relationship matrix from SNP genotypes 

in GBLUP tracks shared haplotypes amongst 

animals rather than animals. This information 

could capture and strengthen connectedness 

between herds and through this may enable genetic 

evaluations based on phenotypes recorded on 

smallholder dairy farms.  

To aid in the separation of the genetic 

potential of an individual from the environmental 

effects, the management group or herd should also 

be modelled (Schaeffer 2009; Visscher & Goddard 

1993; Ugarte et al. 1992; Frey et al. 1997). Since 

the publication of Henderson's selection bias 

theory (1975), there has been debate over the best 

way to model the herd effect. Currently, most 

genetic evaluations in advanced economies treat 

herd as a fixed effect which is appropriate in such 

situations because herd sizes are large. However, 

little research has been undertaken to quantify the 

impact of treating herds as fixed or random effects 

in smallholder farming systems. These farming 

systems are characterised by small herd sizes, large 

differences between production environments and 

likely differences in management practices on 

different farms. Modelling herd as a random effect 

in smallholder scenarios could maximise the 

number of effective records available for use in 

genetic evaluations and in theory should provide 

estimated breeding values (EBV) with higher 

accuracies and reduced bias. 

The objectives of this study were: (i) to 

quantify the power of genomic information to 

enable genetic evaluation based on phenotypes 

recorded on small-holder dairy farms; and (ii) to 

quantify the benefit of treating herds as fixed or 

random effects. We tested a range of scenarios with 

three different models to characterise herd groups 

that varied in the number of sires per generation, 

the number and size of herds and overall 

population size. 

 

Material and methods 

 
Simulation of trait and SNP genotypes 

 
True breeding values were simulated using a 

genetic model with 10,000 QTL with additive 

effects that were sampled from a normal 

distribution following the parameters described by 

Jenko et al (2015). The trait simulated had a narrow 

sense heritability of 0.1 and herd heritability of 0.4 

to reflect variance components previously 

estimated for milk production in East African 

smallholder dairy cattle populations. Phenotypes 

for individuals were simulated by adding a residual 

and herd effect to the true breeding value. Each 

individual had 50,000 single nucleotide genotypes 

simulated following the procedure described by 

Hickey & Gorjanc (2012). 

 

Population history 

 

A population resembling modern dairy cattle was 

simulated over seven generations. Preceding these 

seven generations, 100,000 years of evolution was 

simulated using a coalescent model following the 

parameters described by Jenko et al. (2015). In the 

first generation of the recent historical animal 

breeding population, the chromosomes of the 

individuals were sampled from the 1,000 simulated 

haplotypes. In later generations, individuals had 

their chromosomes sampled from parental 

chromosomes with recombination. The first four 

generations were used to burn-in the simulation. 

The first three of these generations comprised 

1,000 animals of equal sex ratio with 50 of the 

males selected to be sires and 500 females selected 

to be dams of the next generation. In the final 

generation of the burn-in, 40,000 animals of equal 

sex ratio were produced. 
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Recent breeding and herd connectedness  

 

Following historical breeding, six different 

connectedness scenarios were simulated over three 

generations of selection. Connectedness was varied 

using six different numbers of sires per generation: 

50, 100, 250, 500, and 1,000 sires. The first and 

second generations of selection produced 40,000 

animals of equal sex ratio. Selection on sires was 

based on true breeding values (TBV). No selection 

was performed on dams. The final generation of 

selection produced 4,000 animals.  

 

Population and herd size 

 
Four different population sizes were achieved by a 

balanced selection of individuals in the final 

generation based on the identifier of their sire. The 

full 4,000 individual dataset was sub-setted to 

produce multiple data sets with overall population 

sizes of 500, 1,000, 2,000 and 4,000 individuals, 

respectively. Herd counts were sampled from a 

Poisson distribution with  equal to the targeted 

mean herd size. These herd counts were then 

randomly assigned to herds. Herds were then 

randomly assigned to individuals in the final 

generation. This process was repeated for each of 

the six herd size scenarios of 1, 2, 4, 8, 16 and 32 

animals per herd.  

The simulation process resulted in 120 different 

populations to evaluate. Each scenario was 

replicated 10 times. 

 

Estimation of breeding values 

 

Breeding values were estimated by analysing the 

data with univariate models using the Bayesian 

Generalized Linear Regression (BGLR) software 

(Pérez & De Los Campos 2014). Three models 

were fit; (i) excluding a herd effect; (ii) herd fitted 

as a fixed effect; and (iii) herd fitted as a random 

effect. All models fitted the animal as a random 

effect. For PBLUP models, the variance of 

breeding values was equal to 𝐴𝜎𝑎
2, where 𝜎𝑎

2 is the 

genetic variance associated with the numerator 

relationship matrix, A. The A matrix was built 

using a complete pedigree back until the 

grandparental generation. For GBLUP models, the 

variance of breeding values was equal to 𝐺𝜎𝑔
2, 

where 𝜎𝑔
2 is the genetic variance associated with 

the genomic relationship matrix, G. The G matrix 

was built only using individuals from the final 

generation and calculated from the simulated 50k 

SNP genotypes following the VanRaden 1 

approach (VanRaden 2008). An identity matrix and 

additive relationship matrix, combined with their 

respective variances were used to structure the herd 

and animal covariance’s, respectively. To assess 

the accuracy of the genetic evaluations, the PBLUP 

and GBLUP EBVs generated by BGLR were 

correlated with the simulated TBVs. Separate 

accuracies were calculated for every combination 

of model and breeding programme scenario. 

 
Results 

 
Impact of the method on EBV accuracy 

 

GBLUP produced higher accuracies than PBLUP 

across all herd sizes (Figure 1). With a population 

size of 1,000 individuals, the accuracy was 0.445 

for GBLUP and 0.350 for PBLUP. When the 

population size was doubled to 2,000 individuals 

the accuracy was 0.505 for GBLUP and 0.350 for 

PBLUP. The largest population size of 4,000 

records produced the highest accuracies with an 

accuracy of 0.601 for GBLUP and 0.355 for 

PBLUP. Of note is the lack of increase in accuracy 

of PBLUP as the population size increased. This 

was due to the increased number of herd effects 

that were estimated. The trend of increased EBV 

accuracy using GBLUP compared to PBLUB was 

also observed for models excluding the herd effect 

and herd fitted as a fixed effect. Therefore, only 

GBLUP results will be presented from here on.  

 

Fixed versus Random Herd Effect 

Genetic evaluations were run using three models: 

(i) excluding a herd effect; (ii) herd fitted as a fixed 

effect; and (iii) herd fitted as a random effect. 

Including a herd effect in the model was important. 

The model excluding a herd effect produced an 

accuracy of 0.355. While accuracies of 0.433 and 

0.433 were achieved with herd fitted as fixed and 

random effects, respectively. At herd sizes of eight 

or greater, there was no difference in accuracy 

achieved by fitting herd as a fixed or random effect 

(Figure 2a). At a herd size of eight, models with 

herd fitted as a fixed or a random effect produced 

accuracies of 0.417 and 0.420, respectively. At the 

largest herd size of 32, similar accuracies of 0.432 

and 0.431 were observed. 

However, at low herd sizes, the choice of 

the model became increasingly important (Figure 

2b). With a population size of 4,000 cows and a 
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herd size of four, the model with herd fitted as a 

random effect increased EBV accuracy by 0.016. 

This difference more than tripled to 0.057 with a 

decrease in mean herd size to two animals per herd. 

With herd fitted as a random effect, accuracies 

were 0.597, while with herd fitted as a fixed effect, 

accuracies were 0.540. Finally, with a herd size of 

one, the model with herd fitted as a fixed effect 

produced accuracies of 0.000, as expected. While 

the model with herd fitted as a random effect 

produced accuracies of 0.549. Something of note is 

that the accuracies of the model excluding a herd 

effect, 0.554 and 0.552, outperformed the model 

with herd fitted as a fixed effect, 0.000 and 0.540, 

with a mean herd size of two or less. At a herd size 

of one, the model with herd fitted as a random 

effect produced comparable EBV accuracies as the 

model excluding the herd effect. 

 

Impact of Connectedness 

 

Results from GBLUP evaluations with a 

population a size of 4,000 are presented in Table 1. 

Accuracies of 0.580 and 0.530 were achieved at 

low levels of genetic connectedness with four 

offspring per sire spread across 2,000 and 4,000 

herds, respectively. No statistically significant 

changes in accuracy were observed when the 

number of offspring per sire was increased to eight 

and sixteen. 

However, the higher levels of genetic 

connectedness produced with forty offspring per 

sire increased accuracies by 0.029 and 0.030. 

When dams were spread across 2,000 herds an 

accuracy of 0.609 was achieved, while analysis 

including 4,000 herds produced an accuracy of 

0.560. The highest accuracies were achieved with 

80 offspring per sire. This equates to the use of 50 

sires per generation. Accuracies of 0.635 and 0.591 

were achieved with 2,000 and 4,000 herds, 

respectively.   

 

Discussion 

 
There have been increasing efforts to improve 

productivity in East African small-holder dairy 

economies (Mutavi et al. 2016). This has included 

new methods to collect data from rural farms more 

effectively, establish national genetic evaluation 

schemes, as well as, some initial studies into the 

suitability of genomic selection in small-holder 

cattle populations (Ojango et al. 2016; Brown et al. 

2016). Missing or incomplete mating records and 

low levels of genetic connectedness between herds 

have often hampered previous pedigree-based 

evaluations, while genomic studies have often been 

limited by dataset size. This simulation study 

aimed to demonstrate the capability of genomic 

based evaluations to provide reliable results when 

using data from smallholder farms. 

The higher accuracies achieved by GBLUP 

over PBLUP, as well as, the reliable accuracies 

achieved by GBLUP at low numbers of offspring 

per sire and low herd sizes, indicate keeping track 

of haplotypes rather than animals captures and 

strengthens genetic connectedness between herds. 

While, the increased accuracies observed using the 

model with herd fitted as a random effect over a 

fixed effect indicates that the random model can 

increase the number of effective of records used in 

evaluations.  

However, these simulations were based 

upon a random association between the genetic 

value of the dam and herd value. This may not be 

the case in reality, where preferential treatment and 

a positive correlation between farm inputs and 

animal genetic value could exist. Previous 

simulation studies have demonstrated that non-

random associations between sire genetic value 

and management group value can introduce bias to 

sire EBVs (Ugarte et al. 1992; Visscher & Goddard 

1993). The influence of non-random associations 

on bias in EBVs has been investigated less in dams, 

where the trend is expected to be less extreme. 

However, this warrants further investigation in a 

smallholder dairy systems context.  

 

Conclusions 

 
This simulation study aimed to 

demonstrate the capability of genomic based 

evaluations to provide reliable results when using 

data from smallholder farms. GBLUP was shown 

to produce higher accuracies than PBLUP at all 

population sizes and herd sizes. Models with herd 

fitted as a random effect produced equal or higher 

accuracies than the model with herd fitted as a 

fixed effect across all herd size scenarios. The 

differences in accuracy between the two modelling 

approaches were at their largest at low herd sizes. 

While at low levels of genetic connectedness, with 

four offspring per sire and one to two animals per 

herd, GBLUP produced EBV accuracies greater 

than 0.5. 

This study has demonstrated the potential 

of genomic information to be an enabling 

technology in smallholder dairy economies by 

facilitating genetic evaluations with records 
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collected from farms with herd sizes of four cows 

or less. The inclusion of smallholder dairy data in 

genetic evaluations could provide increases in local 

and national milk production with downstream 

impacts upon wider societal, nutritional and 

economic outcomes.  
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Figure 1. Comparison of the genetic evaluation method. The accuracy of estimated breeding values from 

PBLUP (--) & GBLUP () as the size of herds (1-32) and population size (1,000-4,000) is increased. The 

number of offspring per sire was held constant at 4. Herd fitted as a random effect. 
 

Table 1. Impact of connectedness among herds. GBLUP accuracies presented for a population size of 4,000 

individuals. 

 

 

 

 

 

 

 

 

 

nHerds HerdSize Offspring/Sire Accuracy se 

4000 1 

4 0.530 0.008 

8 0.539 0.008 

16 0.530 0.009 

40 0.560 0.010 

80 0.591 0.012 

2000 2 

4 0.580 0.007 

8 0.575 0.007 

16 0.588 0.006 

40 0.609 0.005 

80 0.635 0.008 
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Figure 2. Comparison of modelling the herd effect with GBLUP. The accuracy of estimated breeding values 

with increasing population size (1,000-4,000) and with the herd; (i) excluded from the model (), (ii) fitted 

as a fixed effect () and (iii) fitted as a random effect (). a) Accuracies achieved across all herd sizes (1-

32). b) Accuracies achieved at small herd sizes (1-4). Model (i) not included.  

 

(a) 

(b) 


