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Abstract 

Software for estimating breeding values within a single step system has become available in the last 

years. However, approaches to approximate reliabilities for those breeding values in routine dimensions 

have been rare. Last year, the Genomic Reliability Working Group of Interbull presented a general step-

wise framework (Interbull Standardized Genomic Reliability Method, ISGRM) for approximating 

reliabilities which is applicable to two-step as well as to single-step models. For assessing the accuracy 

of the approach and its performance in the different steps, a small test data set (16.5k individuals in the 

pedigree, 4.3k of them with phenotypes, 5.8k of them genotyped) was created. Exact theoretical single 

step reliabilities could be obtained for this set via numerical inversion of the total system. These 

reliabilities were compared with values obtained with ISGRM. Results looked very promising for the 

genotyped individuals, while they were not completely satisfying for non-genotyped individuals in this 

data set. The lines of action of calculating effective record contributions for the genomic reference set 

and of considering the residual polygenic contribution were identified to have an influence on the 

performance. For larger routine data sets, however, not only the quality of the results, but also the 

possibility that all necessary calculations can be performed in a reasonable time frame with given 

hardware and software configurations is important. We thus assessed approximation options for 

different steps of ISGRM with the software ApaX99 and options to calculate reliabilities of direct 

genomic values via SNP reliabilities with the snp_blup_rel program. Performance testing in a routine 

data set for conformation traits in Fleckvieh cattle (~ 3.3M individuals in pedigree, ~ 1.4M of them with 

phenotypes, 78k of them genotyped) revealed that only the first step, namely the numerical inversion of 

a system with dimension (nSNPs+1) x (nSNPs+1), is computationally demanding (took ~ half an hour time 

and 38 GB RAM in the given data set). All other steps could be performed without any larger memory 

or CPU requirements in very short time. 

Key words: single step model, reliability, genomic evaluation, Interbull Standardized Genomic 

Reliability Method  

 

Introduction 

Using single step models (e.g. Legarra et al., 

2014) to obtain genomically enhanced breeding 

values (GEBV) for all individuals in the 

pedigree with some of them being genotyped 

has become popular in the last years. Different 

software (e.g. Aguilar et al., 2018; Strandén et 

al., 2018) for applying such models has become 

available so that GEBV can be obtained even 

for large(r) routine data sets. Calculating 

reliabilities for such GEBV is possible via 

numerical inversion of the left hand side only in 

very small data sets. However, only a few 

methods for approximation of reliabilities have 

been described in literature so far.  

Misztal et al. (2013) proposed a method that 

allows approximating reliabilities for all 

genotyped individuals in a single step system by 

solving 𝑸−1 = [𝑫 + (𝑰 + 𝑮−1 − 𝑨22
−1)𝛼]−1 

where 𝑫 is a diagonal matrix with weights 

derived from conventional reliabilities,  𝑰 is an 

identity matrix, 𝑮 is a genomic relationship 

matrix, 𝑨22 is the numerator relationship matrix 

between all genotyped individuals and 𝛼 is the 

variance ratio of error and genetic variance. The 

final reliability for a genotyped individual 𝑖 is 

then calculated as  

𝑟𝑖
2 = 1 − 𝛼𝑞𝑖𝑖 . 

With this approach, all genotyped 

individuals obtain a reliability gain due to 
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genomics, but non-genotyped individuals are 

not considered. The necessity to invert 𝑮 and 

𝑨22 might be a limitation of this approach in 

routine data sets with a large number of 

individuals genotyped.  

Based on the idea to develop an Interbull 

standard method for approximating 

genomic(ally enhanced) reliabilities, Liu et al. 

(2017) proposed a new framework which is 

termed Interbull Standardized Genomic 

Reliability Method (ISGRM). ISGRM is 

thought to be used by Interbull members in 

routine applications in order to harmonize the 

way genomic reliabilities are calculated. It is a 

multi-step procedure which was not specially 

designed for single step models. It may, 

however, be used as a close approximation even 

in that context, since it proposes an additional 

step of propagating reliability gains from 

genomics to non-genotyped animals. The 

maximum system size to be solved is set fixed 

by the number of markers used and thus ISGRM 

seems to be applicable also to very large routine 

data sets. 

The aim of this study was to assess ISGRM 

using two different data sets. First, with a very 

small data set approximated reliabilities from 

this approach were compared with true model 

based reliabilities. Since not only the quality of 

results, but also the feasibility of the necessary 

computations is an issue for routine 

applications, we further tested applicability and 

computational demands in a routine-like data 

set.  

Materials and Methods 

Single Step Model 

The underlying Single Step Model was 

assumed to be  

[
𝑿′𝑿 𝑿′𝑼
𝑼′𝑿 𝑼′𝑼 + 𝑯−𝟏𝜆

] [�̂�
�̂�

] = [
𝑿′𝒚

𝑼′𝒚
]          [1] 

where 𝑿 and 𝑼 were design matrices relating 

phenotypes to fixed and random effects, 

respectively, 𝒚 was the vector with phenotypic 

observations, 𝜆 the variance ratio of error and 

genetic variance and 𝑯 the combined pedigree 

and genomic relationship matrix as defined in 

e.g. Aguilar et al. (2010) or Christensen & Lund 

(2010) so that  

𝑯−𝟏 = 𝑨−1 + [
0 0
0 𝑮−1 − 𝑨22

−1]  

and  

𝑉𝑎𝑟(𝒂) = 𝑯𝜎𝑎
2 

𝑮 was calculated as  

𝑮 = (1 − 𝑘)𝑮∗ + 𝑘𝑨22 

with 𝑮∗ being a genomic relationship matrix 

(Method 1 of  VanRaden (2008) with basis 

allele frequencies (Gengler et al., 2007)) and 𝑘 

being the proportion of genetic variance not 

explained by markers.  

Small test data set 

The small test data set was a subset of pig 

routine evaluation data. In order to be able to 

compare approximated 𝑅2 values with 

theoretical model based ones, the size of the 

routine data set was reduced to a pedigree of 16 

500 individuals. 4300 of them had a phenotype 

for a conformation trait with a heritability of 

0.33. 5800 individuals were genotyped with a 

60k SNP chip. 180 of the 5800 individuals had 

an own phenotype and 600 of the 5 800 were 

parent of at least one phenotyped, but non-

genotyped offspring. 

Description of ISGRM as used in this study 

ISGRM is a multi-step procedure. First 

prediction error co(variances) of direct genomic 

values (DGVs) were obtained via SNP effect 

reliabilities assuming 

𝑪 = [

𝟏′𝑾−𝟏𝟏 𝟏′𝑾−𝟏𝒁𝒓

𝒁𝑟′𝑾−𝟏𝟏 𝒁𝑟
′𝑾−𝟏𝒁𝑟 + 𝑰

𝜎𝑒
2

𝜎𝑆𝑁𝑃
2

] 

and  

𝑷𝑬𝑽𝒈 = 𝒁𝑪𝟐𝟐𝒁′𝜎𝑒
2             [2] 

where 𝒁 was a (𝑛𝑔𝑒𝑛𝑜 𝑥 𝑛𝑆𝑁𝑃𝑠) matrix with 

genotypes 0,1,2 corrected for two times the base 

allele frequencies, 𝑛𝑔𝑒𝑛𝑜 was the number of 

genotyped individuals and 𝑛𝑆𝑁𝑃𝑠 was the 

number of SNPs. Subscript 𝑟 indicates that the 

matrix only contained reference individuals, i.e. 

𝒁𝑟 was of dimension (𝑛𝑟𝑒𝑓 𝑥 𝑛𝑆𝑁𝑃𝑠). 𝑾  was a 

matrix of weighting factors used for all 

genotyped reference individuals. Detailed 

description of reference individuals and 
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corresponding weighting factors can be found 

in the following section.  

The corresponding reliabilities 𝑹𝒈
2  might be 

corrected (in a multiplicative way) for residual 

polygenic variance used in the model, for the 

imputation quality in case of imputed genotypes 

and can be adapted to fit to validation 

reliabilities. As we did not have imputed 

genotypes in the data set and we were interested 

in comparing true model based and 

approximated reliabilities, we only applied a 

correction for the polygenic component which 

is described in detail in the next section. The 

resulting reliabilities from this step will be 

termed 𝑹𝐷𝐺𝑉 
2  in the following.  

Next, reliabilities (𝑹𝑨22

𝟐 ) for a subset EBV 

model with 𝑨22 as covariance structure were 

calculated using the same reference population 

and weights as in the first step. In the following, 

a genomic gain for each genotyped individual 

was calculated as  

𝜑𝑔𝑎𝑖𝑛𝑖
=

𝑅𝐷𝐺𝑉𝑖
2

1−𝑅𝐷𝐺𝑉𝑖
2 𝜆 −

𝑅𝐴22𝑖
2

1−𝑅𝐴22𝑖
2 𝜆                [3] 

and then added to the equivalent record 

contributions (𝝋𝑐𝑜𝑛𝑣) of the conventional full 

system (as [1], but with 𝑨 instead of 𝑯) so that 

the final reliability of a genotyped individual 𝑖 
was 

𝑅𝑓𝑖𝑛𝑎𝑙𝑖

2 =
𝜑𝑓𝑖𝑛𝑎𝑙𝑖

𝜑𝑓𝑖𝑛𝑎𝑙𝑖
+ 𝜆

 

with 𝜑𝑓𝑖𝑛𝑎𝑙𝑖
= 𝜑𝑐𝑜𝑛𝑣𝑖

+ 𝜑𝑔𝑎𝑖𝑛𝑖
. 

Propagation gains for non-genotyped 

individuals were obtained by solving  

𝑷𝑬𝑽𝑝𝑟𝑜𝑝 = [𝟏′𝑫−𝟏𝟏 𝟏′𝑫−𝟏𝑲
𝑲′𝑫−𝟏𝟏 𝑲′𝑫−𝟏𝑲 + 𝑨−𝟏𝝀

]
−𝟏

𝜎𝑒
2 

where  𝑫−1 was a diagonal matrix with 

genomic gains for all reference individuals and 

𝑲 was a (𝑛𝑟𝑒𝑓 𝑥 𝑛𝑎𝑙𝑙) design matrix and 𝑛𝑎𝑙𝑙 

was the number of animals in the pedigree. 

From 𝑷𝑬𝑽𝑝𝑟𝑜𝑝 reliabilities and corresponding 

contributions (𝝋𝑝𝑟𝑜𝑝) were calculated for all 

non-genotyped individuals. Final reliabilities 

for non-genotyped individuals were then  

𝑅𝑓𝑖𝑛𝑎𝑙_𝑛𝑔𝑖

2 =
𝜑𝑓𝑖𝑛𝑎𝑙_𝑛𝑔𝑖

𝜑𝑓𝑖𝑛𝑎𝑙_𝑛𝑔𝑖
+ 𝜆

 

with 𝜑𝑓𝑖𝑛𝑎𝑙_𝑛𝑔𝑖
= 𝜑𝑐𝑜𝑛𝑣𝑖

+ 𝜑𝑝𝑟𝑜𝑝𝑖
. 

Reference individuals and weighting factors 

While it is relatively straightforward to 

categorize an individual as a reference animal in 

the two-step approach it is not as obvious in the 

single-step context. Due to the way ISGRM is 

performed the set of reference individuals at 

maximum includes all genotyped individuals; 

non-genotyped (but implicitly imputed) 

individuals cannot be considered. In a 

supplementary document Liu et al. (2018) 

presented guidelines on how to define the 

reference population for ISGRM.  

For strategy w1 we followed these ideas and 

defined a reference population with a) all 

genotyped sires with at least one phenotyped, 

but non-genotyped offspring, and b) genotyped 

females with phenotypes. The weights used in 

the 𝑾−1 matrix are equivalent daughter 

contributions (EDC) for the sires which only 

contained information of phenotyped daughters 

that are not themselves genotyped. All 

genotyped and phenotyped females obtained 

equivalent record contributions (ERC). EDCs 

as well as ERCs were calculated using variance 

ratios referring to an animal model.  

Strategy w1 ignores some potential reference 

individuals, namely genotyped, but non-

phenotyped dams with phenotyped, but non-

genotyped progeny. For strategy w2 we 

additionally defined such dams as reference 

animals with EDC weights calculated 

equivalently to the sires’ EDCs.  

Assuming that the reliability of an 

individual’s breeding value is predominantly 

determined by direct progeny information (e.g. 

like in milk production traits), all relevant 

information will be captured by the respective 

EDCs of genotyped parents. However, if 

information of grand progeny and other 

relatives is considered to contribute 

significantly to the genotyped individual, 

another approach might be better for obtaining 

the weights. Strategy w3 was based on ideas of 

Harris & Johnson (1998, 2010).  Contributions 

of all other genotyped individuals from each 

genotyped individual’s conventional reliability 

estimate was removed, thus keeping only 

information from itself and all other 

phenotyped, but non-genotyped relatives. These 

de-regressed reliabilities were converted to 

ERCs and used as weights. The reference 
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population then consisted of all individuals with 

a non-zero weight (0.2 used as limit in this 

study). 

Polygenic contribution 

Assuming that not all genetic variance can 

be captured by the given marker set, the 

genomic relationship matrix used to build 𝑯 is 

a combination of the raw genomic relationship 

matrix 𝑮∗ and 𝑨𝟐𝟐. When performing step 1 of 

ISGRM via a SNP BLUP model as in [2], it is 

not possible to account for the missing 

polygenic part exactly. Liu et al. (2017) thus 

proposed to use (strategy p1)  

𝑅𝐷𝐺𝑉𝑖

2 = {
(1 − 𝑘)𝑅𝑔𝑖

2

𝑅𝑔𝑖
2   

for any candidate 

for any reference 

individual 

where 𝑘 is the proportion of residual polygenic 

contribution (0.1 assumed in this study). 

We further tested two other approaches to 

approximate 𝑅𝐷𝐺𝑉𝑖

2 , namely 

Strategy p2: (1 − 𝑘)𝑅𝑔𝑖
2 + 𝑘𝑅𝑨22𝑖

2   

Strategy p3:  

(1 − 𝑘)2𝑅𝑔𝑖
2 + (1 − (1 − 𝑘)2)𝑅𝑨22𝑖

2  

Both these additional approaches were 

applied to all genotyped individuals after we 

had seen that the differentiation into reference 

individuals and candidates led to worse results 

(results not shown). 

Comparison of results 

To assess the quality and the exactness of 

ISGRM itself and the optimization potential of 

the different options regarding weighting 

factors and polygenic contribution, we 

numerically inverted the whole left hand side of 

the single-step system (see equation [1]) for the 

small test data set. This true model based 

reliability was used for comparisons to results 

from ISGRM. We also calculated the prediction 

error variance for conventional and A22 systems 

by numerical inversion and solved the model 

used for propagation of the gain to the non-

genotyped individuals exactly. This was done in 

order to avoid inaccuracies due to different 

approximation steps. For assessing the different 

approaches of modelling the polygenic 

contributions, 𝑹𝐷𝐺𝑉
2  were compared to true 

model based reliabilities obtained via the 

inverse of the following left hand side: 

[𝟏′𝑾−𝟏𝟏 𝟏′𝑾−𝟏𝑽
𝑽′𝑾−𝟏𝟏 𝑽′𝑾−𝟏𝑽 + 𝑮−𝟏λ

] 

where 𝑽 is the (𝑛𝑟𝑒𝑓 𝑥 𝑛𝑔𝑒𝑛𝑜) design matrix 

relating observations to random effects and 𝑮 =
(1 − 𝑘)𝑮∗ + 𝑘𝑨22. 

Feasibility and computation time in a routine 

data set 

In order to study if and how ISGRM can be 

applied in large data set, we made some trials 

with a routine data set of Fleckvieh cattle. This 

data set consisted of a pedigree of around 3.3 

million individuals with 1.4 million of them 

having an observation for the conformation trait 

“udder”. 78 000 individuals were genotyped 

with a 50K SNP chip. 5500 of the genotyped 

individuals had phenotypic information 

themselves and 12 000 of the genotyped 

individuals had at least one phenotyped, but 

non-genotyped offspring. We developed a 

pipeline to handle this larger data set with 

available software and perform all steps of 

ISGRM efficiently.   

Results & Discussion 

Figures 1a) and b) show the results for all 

genotyped and non-genotyped individuals in 

the small test data set.  

Figure 1a.  Model based vs approximated  

𝑅𝑓𝑖𝑛𝑎𝑙
2  for all genotyped individuals in the small 

test data set.  



INTERBULL BULLETIN NO. 54. Dubrovnik, Croatia, August 25 - 26, 2018 

5 

 

 

Figure 1b.  Model based vs approximated 

𝑅𝑓𝑖𝑛𝑎𝑙
2   for all non-genotyped individuals in the 

small test data set. 

The results were obtained with weighting 

strategy w3 and polygenic strategy p3 which 

were found to be optimal in this data set (see 

below). For genotyped individuals, the 

approximation of ISGRM was very accurate 

with a correlation of >0.999 and no bias.  

For non-genotyped individuals the 

correlation of model based and approximated 

reliabilities was less than for the genotyped 

individuals and results were unsatisfying. It has 

to be studied further if this result is only due to 

the specific structure of the small data set or if 

there is a methodological error or inaccuracy in 

the way the propagation to the non-genotyped 

individuals is performed.  

As the aim of this part of the study was to 

assess how well the multistep ISGRM 

approximations can match the “true” 

reliabilities, all inverse matrices needed in the 

calculations were numerically inverted in this 

small test data set. In larger real data 

approximations would replace these inversions 

except for the one in equation [2]. Cumulative 

approximations might lessen the quality of the 

final reliabilities, but test runs have shown that 

approximation of 𝑅𝑨22

2  and 𝑅𝑝𝑟𝑜𝑝
2  can be 

performed quite accurately (results not shown) 

and are not assumed to influence the quality of 

the final reliabilities much. 

 

 
Figure 2.  Model based vs approximated 𝑅𝑓𝑖𝑛𝑎𝑙

2  

for all genotyped individuals in the small test 

data set using ERC/EDC based weights as 

proposed by Liu et al. (2018) in  2a), also 

including dams’ EDCs in 2b), or weights based 

on de-regressing ideas following Harris & 

Johnson (1998, 2010) in 2c). 



INTERBULL BULLETIN NO. 54. Dubrovnik, Croatia, August 25 - 26, 2018 

6 

 

Reference individuals and weighting factors 

Figures 2a) to c) show that the quality of the 

final reliabilities for genotyped individuals 

obtained with ISGRM can vary depending on 

the definition of the reference set and the 

weights given to the reference individuals. If 

only sires’ EDCs and females’ ERCs were used, 

ISGRM 𝑅2 underestimated the model based 𝑅2, 

arguably because some phenotypic information 

relevant for the single-step system was lost. 

Figure 2c shows that, in the small test data set, 

results were best when we used a weight based 

on a full model de-regressing approach. 

Especially for data sets that are different from 

the classic milk production data structure 

(almost all females with phenotypes and sires 

with large numbers of daughters), defining 

weights not via EDC/ERC but with an approach 

considering all pathways of information sources 

seems to lead to favorable results (Figures 2a-

c).  

In single step models non-genotyped 

individuals are imputed implicitly. There can be 

an apparent number (depending of data 

structure) of individuals that are very accurately 

imputed via this step (e.g. because they have a 

larger number of genotyped offspring) and 

build links to phenotypes. Even the imputed 

genotypes have a non-ignorable imputation 

error (Edel et al., 2018), these individuals might 

valuably contribute to the SNP effect estimation 

in [1]. In ISGRM, however, reference 

individuals can only be individuals that are 

genotyped. It might be worth to study further on 

how such imputed individuals could be 

considered as reference individuals. 

Residual polygenic contribution 

We tested three different approaches 

regarding the consideration of the residual 

polygenic contribution. Results are shown in 

Figures 3a) to c) for 𝑘 = 0.1. For candidates, 

𝑅𝐷𝐺𝑉
2  seems to be somewhat underestimated 

and biased with strategy p1. This is the more 

pronounced, the larger k is chosen (results not 

shown). Both strategies p2 and p3 worked well 

with a small advantage for p3, which also 

persists in more extreme scenarios with larger  

𝑘 values (results not shown). While strategy p1 

only uses 𝑅𝑔
2, for strategies p2 and p3 

reliabilities of the subset EBV (R𝐀22

2 ) for all 

individuals are necessary. However, these 

values have to be calculated anyway for [3] and 

approximation is straightforward. 

 

Figure 3.  Model based vs approximated 𝑅𝐷𝐺𝑉
2  

in the small test data set for reference 

individuals and candidates using different 

approaches to model the residual polygenic 

contribution.  
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Application to a large data set 

We further established a pipeline that made 

it possible to perform ISGRM in a routine-like 

setting. Table 1 shows which programs were 

used for which step. Building on Harris & 

Johnson algorithms, the reliability 

approximation program ApaX99 (included in 

the MiX99 software package, MiX 

Development Team (2018)) allows, for a given 

set of individuals, to obtain ERC with 

information from all other individuals in the set 

removed. ApaX99 can also be used for all other 

steps that require reliability approximations for 

models with covariance between individuals 

assumed to be pedigree-based. Apart from 

𝑅𝑐𝑜𝑛𝑣
2  (which might also be already available 

from regular routine conventional breeding 

value estimation) it therefore also allows to 

approximate 𝑅𝑨22

2 and 𝑅𝑝𝑟𝑜𝑝 
2 in a few minutes 

with very little memory requirements.  

Table 1. Programs used to perform the different 

steps of ISGRM. 

Step as described in  

Liu et al. (2017) 

A
p

a
X

9
9
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iX

9
9
 

D
ev
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o
p
m
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t 

T
ea
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m
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2
0
1
6
) 

sn
p

_
b

lu
p

_
re

l 
 

(M
än

ty
sa

ar
i 

et
 a

l.
, 

2
0
1
8
) 

Reliabilities of SNP 

genotypes 
X X X 

Reliabilities of DGV  X  

Adjusting the 

theoretical reliabilities 
 X  

Calculating the genomic 

EDC gain 
X X  

Propagation of genomic 

information to non-

genotyped relatives 

X X  

Final reliabilities 

enhanced with genomic 

information 

 X  

The software snp_blup_rel (Mäntysaari et 

al., 2018) uses genotypes and weights for 

reference individuals as input and returns raw 

DGV reliabilities 𝑅𝑔
2. These DGV reliabilities 

are calculated via numerical inversion of the left 

hand side of a SNP BLUP model. Running 

times and memory requirements for tests with 

different reference set sizes and different SNP 

set sizes are presented in Table 2.  

Running this program once for one trait is 

easily feasible. However, one should keep in 

mind that genomic evaluations in dairy cattle 

usually involve several traits. Obtaining 

approximations for several traits also means 

that all steps of ISGRM would have to be run 

repeatedly. Alternative strategies that make it 

possible to invert the SNP BLUP model only 

once (or only a few times) by grouping traits 

with similar heritability and/or similar groups of 

phenotyped individuals and approximate 𝑅𝑔
2 of 

one trait from the solution of the other trait 

might be very helpful and will be subject of 

further study. 

Table 2. Time and memory requirement to 

perform the calculation of raw DGV reliabilities 

via SNP effect reliabilities with snp_blup_rel1
 

(Mäntysaari et al., 2018). 

No of 

reference 

animals 

No of 

SNPs 

Peak 

virtual 

memory 

Approx. time in total  

(building MME/ 

inversion/reliabilities) 

78k 41k 48 GB 35 (7.5/ 9.5/ 11) min 

16k 41k 38 GB 26 (1.5/ 10/ 8.5) min 

16k 20k 19 GB   8 (<1/ <1/ 1.5) min 

16k 8k 10 GB 5.5 (< 1/ < 1/ <1) min 

11k 41k 38 GB 25 (1/ 10.5/ 8) min 
1 applied with default options on a Linux-Server 

with 96 threads and 512 GB RAM 

Conclusions 

The quality of the approximated reliabilities 

with ISGRM was very good for genotyped 

individuals while it was not completely 

satisfying for the non-genotyped individuals in 

this data set. Weights used for reference 

individuals and the way of considering of the 

polygenic contribution have an influence on the 

results. The only step that is computationally 

demanding is the numerical inversion of the 

SNP BLUP model while all other steps can be 

performed quickly also in larger data sets. 
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