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Abstract 

The Canadian 1st lactation genomic evaluation model for feed efficiency was expanded by inclusion of 

2nd lactation phenotypes, which account for 30% of all available international data. The new model is a 

12-trait (lactation by DIM interval by trait) animal model, with assumptions following the current 

official implementation. Feed Efficiency (FE) is defined as genetic Residual Feed Intake in 61- 305 DIM 

within each lactation, with Energy Corrected Milk and Metabolic Body Weight as energy sinks for Dry 

Matter Intake (DMI). Estimates of heritability for FE were 0.06 and 0.03 in 1st and 2nd lactation, 

respectively. Lactations were weakly genetically correlated (rg = 0.25) for FE. Each sink was genetically 

uncorrelated with FE, by definition within each lactation, and genetic correlations between FE and DMI 

were around 0.4. There were 8,927 cows with DMI data in December 2021 test-run, of which 81% were 

genotyped. Inclusion of 2nd lactation data increased the Single-Step reference population size (N = 

12,942) by 17%, compared with the 1st lactation only model. Average reliability of FE for a sample of 

50,000 young, genotyped animals born in 2021 was around 50% for both within lactation traits and the 

FE Index, defined as an average of 1st and 2nd lactation FE. Reliability of 1st lactation FE was larger, on 

average, by 1.5 points compared with estimates using only 1st lactation data. Correlations between FE 

Index and within lactation FE were larger than 0.8. First lactation FE correlated well (r = 0.97) with the 

current official evaluations. A 5-point increase in RBV (mean = 100, SD = 5 for base bulls, reversed in 

sign) for FE Index is expected to result in a reduction in feed intake of bull’s daughters by approximately 

2%. The new Canadian FE model is scheduled for implementation in December 2022, with a 

simultaneous inclusion of FE in LPI and Pro$ indices. 
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Introduction  

Several countries introduced genetic/ 

genomic selection for feed efficiency in dairy 

cattle during the last decade. In Australia, 

genomic selection for feed efficiency was 

launched in 2015 (Pryce et al., 2018). Feed 

efficiency evaluations were implemented in 

2016 in the Netherlands (CRV, 2018), in 

December 2020 in US (Parker Gaddis et al. 

2021), and in 2019 in Nordic (Denmark, 

Finland, Sweden) countries (Stephansen et al., 

2021).  

Dry Matter Intake (DMI) phenotypes are the 

foundation for feed efficiency evaluation. They 

are usually combined with ‘Energy Sinks’ to 

derive phenotypes for Residual Feed Intake 

(RFI), a measure of metabolic feed efficiency. 

This is typically done by fitting a phenotypic 

linear regression of DMI on the energy sinks, 

and then using phenotypic RFI as input for a 

genetic evaluation. Alternatively, genetic RFI 

(Kennedy et al., 1993) can be derived directly 

in a one-step approach, by using a linear 

function of multiple-trait evaluations for DMI 

and the sinks, Metabolic efficiency evaluations 

can be combined with several maintenance 

measures to form an overall feed efficiency 

index. For example, the US feed efficiency 

evaluation includes a genetic component for 

RFI combined with EBV for Live Weight 

derived from type traits. Feed Saved is then 

defined as the amount of feed saved through the 
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combination of improved metabolic efficiency 

and reduced maintenance requirements (Parker 

Gaddis et al., 2021). 

The Canadian model for feed efficiency was 

implemented for the Holstein breed in 2021 

(Jamrozik et al., 2021). The overall aim was to 

provide tools that would enable selection of 

cows that use less feed at the same level of 

production and body size after the peak of 

lactation. It was not aimed at reducing 

maintenance requirements by lowering body 

weight. A secondary objective was to not target 

a reduction of feed intake in early lactation, 

when animals usually have a negative energy 

balance. Consequently, all phenotypes are 

defined in two periods of first lactation: 5-60 

days and 61-305 days in milk (DIM). Traits in 

the 6-trait multiple-trait linear animal model 

are: 

• Metabolic Body Weight (MBW), calculated 

as (body weight)0.75; 

• Energy Corrected Milk (ECM), calculated 

as 0.25*Milk + 12.2*Fat + 7.7*Protein, and 

• Dry Matter Intake (DMI).  

All traits are weekly averages expressed in 

kg/day (ECM and DMI) or kg0.75 (MBW).  

The final outcome is a Canadian genetic 

evaluation for Feed Efficiency (FE), defined as 

genetic RFI in the second part of lactation (61 – 

305 DIM), and derived through linear re-

parameterization of the multiple-trait 

evaluations for DMI and energy sinks (i.e. ECM 

and MBW).  

Only 1st lactation data are currently used for 

genetic evaluation of FE in Canada. Including 

later lactations might better reflect genetic 

aspects of feed efficiency through animal’s 

lifetime. The majority of current genetic 

evaluation models for feed efficiency use data 

from all available lactations in a repeatability 

model. A multiple-trait approach, defining feed 

efficiency traits as similar but not identical in 

different lactations, is theoretically better than a 

repeatability model, but it is more difficult to 

apply due to limited feed efficiency data. 

Estimates of genetic parameters for feed 

efficiency traits in different lactations 

(especially RFI) are scarce, and they differ 

vastly depending on the population and the 

definition of RFI (phenotypic vs. genetic, and 

one-step vs. two-step approaches). 

The objective of this paper was to present an 

extension of the Canadian feed efficiency 

model to include 2nd lactation data. The official 

implementation of this model for routine 

genetic evaluation of Holsteins in Canada is 

scheduled for December 2022. 

Material and Methods 

Data 

The feed efficiency data used by Lactanet 

includes data from fourteen herds in five 

countries, within the Efficient Dairy Genome 

Project  (https://genomedairy.ualberta.ca) and 

the Resilient Dairy Genome Project 

(http://www.resilientdairy.ca).  

The data are organized in several files 

including: Pedigree, Calving, Production 

(milk, fat, protein), and Event (body weight, 

DMI). After merging Pedigree file with the 

official Lactanet counterparts, the August 2021 

Holstein extract included 23,637,765 Pedigree 

records; 19,099 Calving records; 1,080,919 

Production records, and 1,410,523 event 

records.  

First lactation constitutes about half of all 

DMI data available at Lactanet, with 2nd, 3rd and 

later lactations contributing 30, 16 and 7%, 

respectively. Altogether, the first 2 lactations 

included 77%, and the first 3 contained 93% of 

the total data. The data from lactations greater 

than 3rd were of relatively little value for genetic 

evaluation purposes, but it was unclear if we 

should use the first 3 lactations or if using the 

first 2 would suffice? After testing different 

options we decided to use lactations 1 and 2 

only, in a multiple-trait manner. Reasons for 

this (results not shown) were: more reasonable 

and simpler modelling, relatively few data 

benefits from the 3rd lactation data, more 

acceptable genetic parameters from the 2-

lactation model, and good agreement between 

FE EBV from using 2nd only vs. combined 2nd 

and 3rd lactation data. 

https://genomedairy.ualberta.ca/
http://www.resilientdairy.ca/
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Model 

The linear animal model for genomic 

evaluation is the same for each of the 12 feed 

efficiency traits (ECM, MBW and DMI, in 2 

DIM intervals in the first 2 lactations), as in 

Chud et al. (2019). The phenotypes for MBW 

and DMI are standardised within herds to the 

mean and SD of one selected Canadian herd 

(Elora Research Station, affiliated with 

University of Guelph, Guelph, ON). 

Factors in the model, for a single trait, are:  

𝑨𝑮𝑬𝑪 = Age at calving (6 classes), 

 𝒘𝒆𝒆𝒌𝒍𝒂𝒄𝒕 = Lactation week, 

 𝒀𝑺 = Year-Season of calving (4 seasons), 

 𝑯𝒀 = Herd-Year of calving, 

 𝒂 = Additive genetic effect, 

 𝒑𝒆 = Permanent Environmental (PE) effect 

 𝒆 =  Residual. 

All effects except 𝒂, 𝒑𝒆 and 𝒆 are treated as 

fixed in the model. In matrix notation, the 

model can be written as: 

y = X b + Z1 a + Z2 p + e, where 

y is a vector of observations (traits within cows 

within DIM interval), b is a vector of all fixed 

effects, a is a vector of animal additive genetic 

effects, p is a vector of PE effects, e is a vector 

of residuals, X and Zi (i =1, 2) are respective 

incidence matrices. 

Assumptions are that: 

V(a) = H  G, H is a combined pedigree-

genotypes relationship matrix, G is the additive 

genetic covariance (12x12) matrix;  

V(p) = I  P, P is the covariance (12x12) 

matrix for the PE effect; 

V(e) = 
=

+
N

i 1

Ei, Ei is a residual covariance 

matrix (3x3) for either first or second DIM 

interval within each lactation, N is the total 

number of weekly phenotypic records.  

Residuals for traits collected in the same week 

of lactation were assumed correlated, and 

uncorrelated otherwise.  

For each Lactation - DIM interval, let a = [a1, 

a2, a3]’ represent the GEBV for ECM, MBW 

and DMI, respectively. A linear re-

parameterization of these GEBV is defined as 

(following Jamrozik et al., 2021):  

a* = Λ a, 

with 

 Λ =  [
1 0 0
0 1 0

−L31 −L32 1
]    

such that v(a*) = G* = ΛGΛ’ with a3
* being 

uncorrelated with a1
* and a2

*. Non-zero 

elements of Λ, L31 and L32 can be expressed as 

functions of elements of genetic covariance 

matrix G as: 

L31 = (g12*g23 - g13*g22)/(g12*g12 - g11*g22) 

L32 = (g12*g13 - g11*g23)/(g12*g12 - g11*g22), 

and they are partial (genetic) regression 

coefficients of DMI on ECM and MBW.  

The re-parameterized EBV of DMI are 

equivalent to genetic RFI, as discussed in 

Kennedy et al. (1993). The re-parameterization 

as above can also be derived using a recursive 

model approach (Jamrozik et al., 2017). 

Co-variance components and related genetic 

parameters involving RFI can be obtained as:  

G* = ΛGΛ’, 

P* = ΛPΛ’, 

R* = ΛRΛ’. 

The derivations of proxies for RFI were 

presented in a ‘within Lactation - DIM interval’ 

framework. This can be easy generalized for the 

newly proposed 2 lactation FE model 

(involving multiple traits for 2 DIM intervals 

within each lactation) by defining Λ as ∑+Λij, 

where Λi refers to the j-th DIM interval in the i-

th lactation.  

Estimation of genetic parameters 

The final data after edits, for co-variance 

component estimation using the August 2021 

extract, consisted of 208,432 weekly records on 

7,302 cows. The phenotypes, within two DIM 

classes (5 – 60 DIM and 61 – 305 DIM) of 1st 

and 2nd lactations, are described in Table 1.  

Pedigree file was created by tracing the ancestry 

of cows with phenotypes 4 generations back. It 

resulted in 21,465 animals to be included for 

covariance component estimation. 

Co-variance components of the model for 

ECM, MBW and DMI were estimated with the 
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Monte Carlo-Expectation Maximization-

Restricted Maximum Likelihood- (MC-EM-

REML) algorithm (Matilainen et al., 2012) 

implemented in the Mix99 software package 

(MiX99 Development Team, 2017). The same 

model as above was used, with the H 

relationship matrix replaced by the additive 

relationships matrix (A). 

Genomic Evaluation 

The Single-Step method is used to fit the 

multiple-trait linear animal model for 12 traits, 

with genotypic information via MiX99 software 

(MiX99 Development Team, 2017). Details of 

the methods are presented in Jamrozik et al. 

(2021). 

The sign of evaluations for DMI and RFI is 

reversed, thus the higher values indicate a better 

(more desirable) feed efficiency of an animal. 

All evaluations are expressed as Relative 

Breeding Values (RBV) with a mean of 100 and 

SD = 5 for base bulls (born 2006 – 2015, with 

an official GEBV for FE. Similarly to the 

current model, FE is defined as genetic RFI in 

61- 305 DIM within each lactation. The Feed 

Efficiency Index (FE Index) is created as the 

average across both lactations, of RBVs for FE 

in 61 – 305 DIM. Sire evaluation for all traits is 

declared as ‘Official’ when the bull has at least 

5 daughters with DMI data and a minimum 

reliability for FE Index of 50%. 

Results and Discussion 

Genetic Parameters 

Estimates of the co-variance components 

were obtained with 498 iterations of the MC-

EC-REML algorithm, assuming the 

convergence criterion of 1.e-8.  

Estimates of genetic regression coefficients 

of DMI on energy sinks are in Table 2. Since 

those are not directly comparable between sinks 

and specific RFIs, standardized regression 

coefficients and the relative impact (%) of 

energy sinks on DMI are also provided. There 

was a positive relationship among DMI and 

both energy sink traits across all lactations and 

DIM intervals. ECM and MBW contributed to 

RFI at the ratio of 60 to 40% in 61 – 305 DIM 

in both lactations, indicating stronger impact of 

ECM on energy requirement after the peak of 

lactation. This proportion was different in the 

first part of lactation and varied a little between 

lactations. 

Estimates of heritability, genetic and 

phenotypic correlations for all traits are in 

Tables 3 and 4, for 1st and 2nd lactation, 

respectively. Table 5 gives genetic correlations 

among traits in 1st and 2nd lactation. Heritability 

estimates for DMI and energy sinks were in line 

with other literature estimates. Heritability of 

RFI was lower, 6 and 3% for 61 – 305 DIM in 

1st and 2nd lactation, respectively. A significant 

portion of genetic variability caused by ECM 

and MBW was removed by the genetic 

adjustment of DMI. By definition, RFI and the 

energy sink traits were genetically uncorrelated. 

Genetic correlations between DMI and ECM 

were larger than between DMI and MBW, in the 

second part of both lactations. DMI was 

correlated with RFI at the level of 40%, 

indicating that DMI and RFI are genetically 

different traits. Genetic correlations for traits 

between lactation were high for DMI, ECM and 

MBW, and much smaller for RFI (25% in 61 – 

305 DIM). Phenotypically, RFI was less 

correlated with energy sinks compared to DMI, 

as expected.   

Our estimates of heritability for RFI were 

generally smaller than other published values 

for this trait.  Hardie et al. (2017) reported 

heritability of RFI equal to 0.14 and 0.13 for 

primiparous and multiparous US Holstein cows, 

respectively. Genomic heritabilities of RFI in 

Australian Holsteins ranged between 0.18 for 

cows and 0.36 for heifers (Bolormaa et al., 

2022). The principal reason for our lower 

heritability estimates seems to be the definition 

of RFI (genetic vs. phenotypic), confirming 

Kennedy et al. (1993) observations. Similarly, 

genetic correlations for RFI between lactation 

obtained in this study were smaller than 

estimates for other populations, although there 

is a relatively limited literature on this subject.  

Estimates from other sources are also difficult 
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to compare directly, given differences in RFI 

definitions, estimation models, and other 

factors. Bolormaa et al. (2022) reported a 

genetic correlation of 0.47 between RFI for 

Australian Holstein heifers and cows. US 

Holstein estimate of genetic correlation 

between 1st and later lactation cows was 0.76 

(Hardie et al., 2017). On the contrary, 

Stephansen et al. (2022) estimated genetic 

correlation of 0.0 between 1st and 2nd lactation 

for genetic RFI using international Holstein 

data. This latter result supports our lower 

estimates of between lactation genetic 

correlations for RFI, and further illustrates 

important differences between genetic and 

phenotypic RFI (Kennedy et al., 1993). 

Genomic Evaluations 

A December 2021 test-run of the new model 

included 8,927 cows with phenotypic data, of 

which 8,247 had DMI and 7,218 were 

genotyped (Table 6). These phenotyped cows 

were represented by 1,775 sires, of which 1,465 

were genotyped. In total, there were 27,203 

animals in the 4-generation pedigree, and the 

genomic reference population included 12,942 

genotyped animals. Adding 2nd lactation data to 

the model increased the number of genotyped 

cows with phenotypes by 28%, sires of those 

cows by 12%, and finally, the size of the 

reference population, which are all genotyped 

animals in the pedigree, by 17%. 

Two groups of animals were selected for 

comparison purposes, in terms of RBV and 

respective reliabilities: 479 sires with official 

status (PROVEN), and a sample of 50,000 

young, genotyped animals born in 2021 

(YOUNG). RBVs for YOUNG animals were 

derived indirectly, using the SNP solutions 

(Jamrozik et al., 2021).  

Reliabilities for YOUNG animals were 50 – 

51%, with similar distributions for all FE 

characteristics. PROVEN sires had higher 

levels of reliability for all traits (75 – 79%). 

Adding 2nd lactation data increased reliability of 

FE in 1st lactation by 1 or 2 points for the 

majority of YOUNG animals. Correlations 

between FE in 1st and 2nd lactation were 0.47 

and 0.34 for YOUNG and PROVEN, 

respectively, and were larger than the 

corresponding genetic correlations (0.25). The 

FE Index was correlated with FE in each of 1st 

and 2nd lactations at the level of 80% for both 

groups of animals. The FE evaluations in 1st 

lactation, when estimated using only 1st 

lactation data, were highly correlated with 

proofs based on data from both lactations (0.97 

for both PROVEN and YOUNG). The 2-

lactaions FE Index had a correlations of 80% 

with FE in 1st lactation based only on 1st 

lactation data, for both the YOUNG and 

PROVEN animals. 

Relationships Between sire RBV and 

Daughter Phenotypes  

Sire daughter averages for DMI in 1st and 2nd 

lactations were regressed on sire RBV for FE 

Index, to translate RBV expressions to an 

equivalent expected reduction in DMI of 

daughters (Figures 1 and 2).  Sires with higher 

FE Index values had daughters with lower DMI 

intake in both lactations, indicating better feed 

efficiency for the high-ranking sires. A 5-point 

increase in FE Index (1 SD) has the expected 

effect of decreasing DMI in daughters by 80 and 

120 kg between 61-305 DIM in 1st and 2nd 

lactation, respectively, which is equivalent to 

approximately 2% reduction in DMI per 

lactation. 

Conclusions 

A new model for feed efficiency evaluation, 

using data from 1st and 2nd lactations in a 

multiple-trait, one-step approach, was 

developed for Canadian Holsteins. Feed 

efficiency measures, derived as genetic RFI in 

61 – 305 DIM, separately by lactation, had 

relatively low heritabilities and weak genetic 

correlations between lactations. Adding 2nd 

lactation data increased the reliabilities of feed 

efficiency for young, genotyped animals. There 

was good agreement between evaluation results 

from the current, 1st lactation only model and 

the new model. Routine implementation of the 
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new model is planned for December 2022, with 

simultaneous inclusion of FE in LPI and Pro$ 

indices. 
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Table 1: August 2021 data after edits, for estimation of co-variance components by lactation and DIM class. 
Lactation Trait1/DIM 

interval 

5 – 60 DIM 61 – 305 DIM 

# Records Mean SD # Records Mean SD 

 

 

First 

ECM 22,829 32.4 6.6 79,861 32.5 6.2 

MBW 17,743 115.4 9.2 60,221 122.3 10.6 

DMI 24,629 17.6 3.5 75,124 21.5 3.3 

 

 

Second 

ECM 16,456 42.9 7.6 54,764 37.6 8.3 

MBW 12,869 126.8 9.8 43,253 132.6 11.4 

DMI 16,409 21.8 4.4 47,789 25.0 4.3 
1ECM = Energy Corrected Milk, MBW = Metabolic Body Weight, DMI = Dry Matter Intake 

Table 2: Estimates of regression and standardized genetic regression coefficients (Energy Sink → DMI), and 

relative impact (%) of energy sinks on DMI, by lactation and DIM class 
Lactation Sink1/ 

DIM 

Regression coefficients Standardized regression 

coefficients 

Relative impact 

5 - 60 61 - 305 5 - 60 61 - 305 5 - 60 61 – 305 

        

First ECM 0.179 0.463 0.387 0.782 37 64 

MBW 

 

0.177 0.123 0.651 0.440 63 36 

Second ECM 0.421 0.595 0.594 0.762 55 60 

MBW 0.158 0.162 0.488 0.510 45 40 
1ECM = Energy Corrected Milk, MBW = Metabolic Body Weight 

Table 3: First lactation heritability (diagonal), genetic (above diagonal) and phenotypic (below diagonal) 

correlations (all values x100) 

DIM Interval/ Trait1 5 - 60 61 – 305 

ECM MBW DMI RFI ECM MBW DMI RFI 

 

 

5 – 60 

ECM 32 13 47 0 94 -4 74 4 

MBW 12 52 70 0 16 96 50 -10 

DMI 36 40 26 60 55 65 87 37 

RFI 5 -13 79 13 13 7 44 70 

 

 

61 – 305 

 

ECM 54 9 26 3 28 0 78 0 

MBW -3 77 32 -3 3 53 44 0 

DMI 31 25 41 22 50 30 24 44 

RFI -9 -5 15 24 -27 -2 65 6 
1ECM = Energy Corrected Milk, MBW = Metabolic Body Weight, DMI = Dry Matter Intake, RFI = Residual 

Feed Intake 

Table 4: Second lactation heritability (diagonal), genetic (above diagonal) and phenotypic (below diagonal) 

correlations (all values x100) 

DIM Interval/ Trait1 5 - 60 61 – 305 

ECM MBW DMI RFI ECM MBW DMI RFI 

 

 

5 – 60 

ECM 16 19 69 0 91 10 80 14 

MBW 17 49 60 0 7 98 54 -3 

DMI 44 33 15 55 65 55 95 41 

RFI -22 -4 74 6 14 3 38 63 

 

 

61 – 305 

 

ECM 45 4 28 1 16 -2 75 0 

MBW 3 82 26 -2 -1 50 50 0 

DMI 28 24 46 27 48 30 15 42 

RFI -7 -1 22 30 -29 3 66 3 
1ECM = Energy Corrected Milk, MBW = Metabolic Body Weight, DMI = Dry Matter Intake, RFI = Residual 

Feed Intake 
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Table 5: First (row) vs. second (column) lactation genetic correlations (all values x100) 

DIM Interval/ Trait1 5 - 60 61 – 305 

ECM MBW DMI RFI ECM MBW DMI RFI 

 

 

5 – 60 

ECM 65 5 56 29 65 0 61 28 

MBW 19 90 57 4 8 89 52 0 

DMI 43 65 76 34 42 63 72 21 

RFI 10 7 28 34 18 9 25 17 

 

 

61 – 305 

 

ECM 66 7 62 36 70 2 66 29 

MBW 8 92 49 -1 -2 92 43 -4 

DMI 58 46 78 39 57 43 79 26 

RFI 7 0 18 25 7 3 26 25 
1ECM = Energy Corrected Milk, MBW = Metabolic Body Weight, DMI = Dry Matter Intake, RFI = Residual 

Feed Intake 

Table 6: Data statistics for December 2021 test-run 

No. of Lactation Total 

First Second 

 

Records 132,438 89,444 221,882 

DMI Records 110,094 68,498 178,592 

Cows with data 6,777 4,885 8,927 

Cows with DMI 6,020 4,179 8,247 

Sires of cows 1,475 1,330 1,775 

 

 

Genotyped 

Cows 5,643 3,868 7,218 

Cows with DMI 5,161 3,390 6,953 

Sires of cows 1,248 1,095 1,465 

Figure 1: Relationship between sire proof for FE Index and daughter average daily DMI in 61 – 305 DIM of 1st 

lactation 
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Figure 2: Relationship between sire proof for FE Index and daughter average daily DMI in 61 – 305 DIM of 2nd 

lactation 
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